skip to main content


Title: Cross-kinks control screw dislocation strength in equiatomic bcc refractory alloys
Refractory multi-element alloys (RMEA) with body-centered cubic (bcc) structure have been the object of much research over the last decade due to their high potential as candidate materials for high- temperature applications. Most of these alloys display a remarkable strength at high temperatures, which cannot be explained by the standard model of bcc plasticity based on thermally-activated screw disloca- tion motion. Several works have pointed to chemical energy fluctuations as an essential aspect of RMEA strength that is not captured by standard models. In this work, we quantify the contribution of screw dis- locations to the strength of equiatomic Nb-Ta-V alloys using a kinetic Monte Carlo model fitted to solu- tion energetics obtained from atomistic calculations. In agreement with molecular dynamics simulations, we find that chemical energy fluctuations along the dislocation line lead to measurable concentrations of kinks in equilibrium in a wide temperature range. A fraction of these form cross-kink configurations, which are ultimately found to control screw dislocation motion and material strength. Our simulations (i) confirm that the evolution of cross kinks and self-pinning are strong contributors to the so-called ‘cocktail’ effect in this alloy at low temperature, and (ii) substantiate the notion that screw dislocation plasticity alone cannot explain the high temperature strength of bcc RMEA.  more » « less
Award ID(s):
1905822
NSF-PAR ID:
10231458
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Acta materialia
Volume:
211
ISSN:
1873-2453
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The mechanical response of complex concentrated alloys (CCAs) deviates from that of their pure and dilute counterparts due to the introduction of a combinatorially sized chemical concentration dimension. Compositional fluctuations constantly alter the energy landscape over which dislocations move, leading to line roughness and the appearance of defects such as kinks and jogs under stress and temperature conditions where they would ordinarily not exist in pure metals and dilute alloys. The presence of suchchemicaldefects gives rise to atomic-level mechanisms that fundamentally change how CCAs deform plastically at meso- and macroscales. In this article, we provide a review of recent advances in modeling dislocation glide processes in CCAs, including atomistic simulations of dislocation glide using molecular dynamics, kinetic Monte Carlo simulations of edge and screw dislocation motion in refractory CCAs, and phase-field models of dislocation evolution over complex energy landscapes. We also discuss pathways to develop comprehensive simulation methodologies that connect an atomic-level description of the compositional complexity of CCAs with their mesoscopic dislocation-mediated plastic response with an eye toward improved design of CCA with superior mechanical response.

    Graphical abstract

     
    more » « less
  2. Plasticity in body centered cubic (BCC) crystals is shown to be controlled by slow screw dislocation motion, owing to the thermally-activated process of kink pair nucleation and migration. Through three dimensional discrete dislocation dynamics simulations, this work unravels the mystery of how such slow screw dislocation behavior contributes to extremely rapid strain bursts in submicron BCC tungsten (W) pillars, which is typical of BCC metals. It is found that strain bursts are dominated by the motion of non-screw dislocations at low strain rate, but are more influenced by screw dislocations at high strain rate. The total, and partial strain burst magnitude due to screw dislocations alone, are found to exhibit rate dependence following a power law statistics with exponent of 0.65. Similar power law statistics are also obeyed for the standard deviation of the corresponding plastic strain rate. The role of screw dislocations is attributed to the changing nature of dislocation source operation at different strain rates. The corresponding spatial distribution of plastic deformation is also discussed based on the uniqueness of the simulation method in reproducing the distribution of slipped area and plastic strain with very high spatial resolution. 
    more » « less
  3. Refractory high entropy alloys (RHEAs) have gained significant attention in recent years as potential replacements for Ni-based superalloys in gas turbine applications. Improving their properties, such as their high-temperature yield strength, is crucial to their success. Unfortunately, exploring this vast chemical space using exclusively experimental approaches is impractical due to the considerable cost of the synthesis, processing, and testing of candidate alloys, particularly at operation-relevant temperatures. On the other hand, the lack of reasonably accurate predictive property models, especially for high-temperature properties, makes traditional Integrated Computational Materials Engineering (ICME) methods inadequate. In this paper, we address this challenge by combining machine-learning models, easy-to-implement physics-based models, and inexpensive proxy experimental data to develop robust and fast-acting models using the concept of Bayesian updating. The framework combines data from one of the most comprehensive databases on RHEAs (Borg et al., 2020) with one of the most widely used physics-based strength models for BCC-based RHEAs (Maresca and Curtin, 2020) into a compact predictive model that is significantly more accurate than the state-of-the-art. This model is cross-validated, tested for physics-informed extrapolation, and rigorously benchmarked against standard Gaussian process regressors (GPRs) in a toy Bayesian optimization problem. Such a model can be used as a tool within ICME frameworks to screen for RHEAs with superior high-temperature properties. The code associated with this work is available at: https://codeocean.com/capsule/7849853/tree/v2. 
    more » « less
  4. Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum.

     
    more » « less
  5. Abstract Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent “high-entropy alloys (HEAs)” based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 10 7 BCC HEAs and identify over 10 6 possible ultra-strong high-T alloy compositions for future exploration. 
    more » « less