skip to main content

Title: A converse sum of squares lyapunov function for outer approximation of minimal attractor sets of nonlinear systems

Many dynamical systems described by nonlinear ODEs are unstable. Their associated solutions do not converge towards an equilibrium point, but rather converge towards some invariant subset of the state space called an attractor set. For a given ODE, in general, the existence, shape and structure of the attractor sets of the ODE are unknown. Fortunately, the sublevel sets of Lyapunov functions can provide bounds on the attractor sets of ODEs. In this paper we propose a new Lyapunov characterization of attractor sets that is well suited to the problem of finding the minimal attractor set. We show our Lyapunov characterization is non-conservative even when restricted to Sum-of-Squares (SOS) Lyapunov functions. Given these results, we propose a SOS programming problem based on determinant maximization that yields an SOS Lyapunov function whose \begin{document}$ 1 $\end{document}-sublevel set has minimal volume, is an attractor set itself, and provides an optimal outer approximation of the minimal attractor set of the ODE. Several numerical examples are presented including the Lorenz attractor and Van-der-Pol oscillator.

Award ID(s):
Publication Date:
Journal Name:
Journal of Computational Dynamics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Genetic variations in the COVID-19 virus are one of the main causes of the COVID-19 pandemic outbreak in 2020 and 2021. In this article, we aim to introduce a new type of model, a system coupled with ordinary differential equations (ODEs) and measure differential equation (MDE), stemming from the classical SIR model for the variants distribution. Specifically, we model the evolution of susceptible \begin{document}$ S $\end{document} and removed \begin{document}$ R $\end{document} populations by ODEs and the infected \begin{document}$ I $\end{document} population by a MDE comprised of a probability vector field (PVF) and a source term. In addition, the ODEs for \begin{document}$ S $\end{document} and \begin{document}$ R $\end{document} contains terms that are related to the measure \begin{document}$ I $\end{document}. We establish analytically the well-posedness of the coupled ODE-MDE system by using generalized Wasserstein distance. We give two examples to show that the proposed ODE-MDE model coincides with the classical SIR model in case of constant or time-dependent parameters as special cases.

  2. This paper introduces a novel generative encoder (GE) framework for generative imaging and image processing tasks like image reconstruction, compression, denoising, inpainting, deblurring, and super-resolution. GE unifies the generative capacity of GANs and the stability of AEs in an optimization framework instead of stacking GANs and AEs into a single network or combining their loss functions as in existing literature. GE provides a novel approach to visualizing relationships between latent spaces and the data space. The GE framework is made up of a pre-training phase and a solving phase. In the former, a GAN with generator \begin{document}$ G $\end{document} capturing the data distribution of a given image set, and an AE network with encoder \begin{document}$ E $\end{document} that compresses images following the estimated distribution by \begin{document}$ G $\end{document} are trained separately, resulting in two latent representations of the data, denoted as the generative and encoding latent space respectively. In the solving phase, given noisy image \begin{document}$ x = \mathcal{P}(x^*) $\end{document}, where \begin{document}$ x^* $\end{document} is the target unknown image, \begin{document}$ \mathcal{P} $\end{document} is an operator adding an addictive, or multiplicative, or convolutional noise, or equivalently given such an image \begin{document}$ x $\end{document}more »in the compressed domain, i.e., given \begin{document}$ m = E(x) $\end{document}, the two latent spaces are unified via solving the optimization problem

    and the image \begin{document}$ x^* $\end{document} is recovered in a generative way via \begin{document}$ \hat{x}: = G(z^*)\approx x^* $\end{document}, where \begin{document}$ \lambda>0 $\end{document} is a hyperparameter. The unification of the two spaces allows improved performance against corresponding GAN and AE networks while visualizing interesting properties in each latent space.

    « less
  3. We consider the well-known Lieb-Liniger (LL) model for \begin{document}$ N $\end{document} bosons interacting pairwise on the line via the \begin{document}$ \delta $\end{document} potential in the mean-field scaling regime. Assuming suitable asymptotic factorization of the initial wave functions and convergence of the microscopic energy per particle, we show that the time-dependent reduced density matrices of the system converge in trace norm to the pure states given by the solution to the one-dimensional cubic nonlinear Schrödinger equation (NLS) with an explict rate of convergence. In contrast to previous work [3] relying on the formalism of second quantization and coherent states and without an explicit rate, our proof is based on the counting method of Pickl [65,66,67] and Knowles and Pickl [44]. To overcome difficulties stemming from the singularity of the \begin{document}$ \delta $\end{document} potential, we introduce a new short-range approximation argument that exploits the Hölder continuity of the \begin{document}$ N $\end{document}-body wave function in a single particle variable. By further exploiting the \begin{document}$ L^2 $\end{document}-subcritical well-posedness theory for the 1D cubic NLS, we can prove mean-field convergence when the limiting solution to the NLS has finitemore »mass, but only for a very special class of \begin{document}$ N $\end{document}-body initial states.

    « less
  4. Abstract

    We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$w:NR+,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$f1,f2,,froverNand requirements$$k_1,k_2,\ldots ,k_r$$k1,k2,,krthe goal is to find a minimum weight subset$$S \subseteq N$$SNsuch that$$f_i(S) \ge k_i$$fi(S)kifor$$1 \le i \le r$$1ir. We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$r=1Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$O(log(kr))approximation where$$k = \sum _i k_i$$k=ikiand this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$(1-1/e-ε)while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$O(1ϵlogr)in the cost. Second, we consider the special case when each$$f_i$$fiis a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraintsmore »Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.

    « less
  5. In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian \begin{document}$ (- \Delta)^\frac{{ \alpha}}{{2}} $\end{document} for \begin{document}$ \alpha \in (0, 2) $\end{document}. One main advantage is that our method can easily increase numerical accuracy by using high-degree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of \begin{document}$ {\mathcal O}(h^2) $\end{document}, while \begin{document}$ {\mathcal O}(h^4) $\end{document} for quadratic basis functions with \begin{document}$ h $\end{document} a small mesh size. This accuracy can be achieved for any \begin{document}$ \alpha \in (0, 2) $\end{document} and can be further increased if higher-degree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies \begin{document}$ u \in C^{m, l}(\bar{ \Omega}) $\end{document} for \begin{document}$ m \in {\mathbb N} $\end{document} and \begin{document}$ 0 < l < 1 $\end{document}, our method has an accuracy of \begin{document}$more »{\mathcal O}(h^{\min\{m+l, \, 2\}}) $\end{document} for constant and linear basis functions, while \begin{document}$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $\end{document} for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency.

    « less