The identification of persistent radio sources (PRSs) coincident with two repeating fast radio bursts (FRBs) supports FRB theories requiring a compact central engine. However, deep nondetections in other cases highlight the diversity of repeating FRBs and their local environments. Here, we perform a systematic search for radio sources towards 37 CHIME/FRB repeaters using their arcminute localizations and a combination of archival surveys and targeted observations. Through multiwavelength analysis of individual radio sources, we identify two (20181030A-S1 and 20190417A-S1) for which we disfavor an origin of either star formation or an active galactic nucleus in their host galaxies and thus consider them candidate PRSs. We do not find any associated PRSs for the majority of the repeating FRBs in our sample. For eight FRB fields with Very Large Array imaging, we provide deep limits on the presence of PRSs that are 2–4 orders of magnitude fainter than the PRS associated with FRB 20121102A. Using Very Large Array Sky Survey imaging of all 37 fields, we constrain the rate of luminous (≳1040erg s−1) PRSs associated with repeating FRBs to be low. Within the context of FRB-PRS models, we find that 20181030A-S1 and 20190417A-S1 can be reasonably explained within the context of magnetar, hypernebulae, gamma-ray burst afterglow, or supernova ejecta models—although we note that both sources follow the radio luminosity versus rotation measure relationship predicted in the nebula model framework. Future observations will be required to both further characterize and confirm the association of these PRS candidates with the FRBs.
- Award ID(s):
- 1714897
- PAR ID:
- 10191187
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 489
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3643 to 3647
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Recent observations have shown that repeating fast radio bursts (FRBs) exhibit band-limited emission, whose frequency-dependent amplitude can be modeled using a Gaussian function. In this analysis, we show that banded emission of FRBs can lead to incompleteness across the observing band. This biases the detected sample of bursts and can explain the various shapes of cumulative energy distributions seen for repeating FRBs. We assume a Gaussian shape of the burst spectra and use simulations to demonstrate the above bias using an FRB 121102-like example. We recovered energy distributions that showed a break in power law and flattening of power law at low energies, based on the fluence threshold of the observations. We provide recommendations for single-pulse searches and analysis of repeating FRBs to account for this incompleteness. Primarily, we recommend that burst spectra should be modeled to estimate the intrinsic fluence and bandwidth of the burst robustly. Also, bursts that lie mainly within the observing band should be used for analyses of energy distributions. We show that the bimodality reported in the distribution of energies of FRB 121102 by Li et al. disappears when burst bandwidth, instead of the center frequency of the observation, is used to estimate energy. Subbanded searches will also aid in detecting band-limited bursts. All the analysis scripts used in this work are available in a Github repository (
https://github.com/KshitijAggarwal/banded_repeater_analysis ). -
Abstract Since the discovery of the first fast radio burst (FRB) in 2007, and their confirmation as an abundant extragalactic population in 2013, the study of these sources has expanded at an incredible rate. In our 2019 review on the subject, we presented a growing, but still mysterious, population of FRBs—60 unique sources, 2 repeating FRBs, and only 1 identified host galaxy. However, in only a few short years, new observations and discoveries have given us a wealth of information about these sources. The total FRB population now stands at over 600 published sources, 24 repeaters, and 19 host galaxies. Higher time resolution data, sustained monitoring, and precision localisations have given us insight into repeaters, host galaxies, burst morphology, source activity, progenitor models, and the use of FRBs as cosmological probes. The recent detection of a bright FRB-like burst from the Galactic magnetar SGR 1935 + 2154 provides an important link between FRBs and magnetars. There also continue to be surprising discoveries, like periodic modulation of activity from repeaters and the localisation of one FRB source to a relatively nearby globular cluster associated with the M81 galaxy. In this review, we summarise the exciting observational results from the past few years. We also highlight their impact on our understanding of the FRB population and proposed progenitor models. We build on the introduction to FRBs in our earlier review, update our readers on recent results, and discuss interesting avenues for exploration as the field enters a new regime where hundreds to thousands of new FRBs will be discovered and reported each year.
-
ABSTRACT The central engine in long gamma-ray bursts (GRBs) is thought to be a compact object produced by the core collapse of massive stars, but its exact nature (black hole or millisecond magnetar) is still debatable. Although the central engine of GRB collapsars is hidden to direct observation, its properties may be imprinted on the accompanying electromagnetic signals. We aim to decipher the generic properties of central engines that are consistent with prompt observations of long GRBs detected by the Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory. Adopting a generic model for the central engine, in which the engine power and activity time-scale are independent of each other, we perform Monte Carlo simulations of long GRBs produced by jets that successfully breakout from the star. Our simulations consider the dependence of the jet breakout time-scale on the engine luminosity and the effects of the detector’s flux threshold. The two-dimensional (2D) distribution of simulated detectable bursts in the gamma-ray luminosity versus gamma-ray duration plane is consistent with the observed one for a range of parameter values describing the central engine. The intrinsic 2D distribution of simulated collapsar GRBs peaks at lower gamma-ray luminosities and longer durations than the observed one, a prediction that can be tested in the future with more sensitive detectors. Black hole accretors, whose power and activity time are set by the large-scale magnetic flux through the progenitor star and stellar structure, respectively, are compatible with the properties of the central engine inferred by our model.more » « less
-
ABSTRACT FRB 20220912A is a repeating Fast Radio Burst (FRB) that was discovered in Fall 2022 and remained highly active for several months. We report the detection of 35 FRBs from 541 h of follow-up observations of this source using the recently refurbished Allen Telescope Array, covering 1344 MHz of bandwidth primarily centred at 1572 MHz. All 35 FRBs were detected in the lower half of the band with non-detections in the upper half and covered fluences from 4–431 Jy-ms (median = 48.27 Jy-ms). We find consistency with previous repeater studies for a range of spectrotemporal features including: bursts with downward frequency drifting over time; a positive correlation between bandwidth and centre frequency; and a decrease in sub-burst duration over time. We report an apparent decrease in the centre frequency of observed bursts over the two months of the observing campaign (corresponding to a drop of 6.21 ± 0.76 MHz per d). We predict a cut-off fluence for FRB 20220912A of Fmax ≲ 104 Jy-ms, for this source to be consistent with the all-sky rate, and find that FRB 20220912A significantly contributed to the all-sky FRB rate at a level of a few per cent for fluences of ∼100 Jy-ms. Finally, we investigate characteristic time-scales and sub-burst periodicities and find (a) a median inter-subburst time-scale of 5.82 ± 1.16 ms in the multi-component bursts and (b) no evidence of strict periodicity even in the most evenly spaced multi-component burst in the sample. Our results demonstrate the importance of wideband observations of FRBs, and provide an important set of observational parameters against which to compare FRB progenitor and emission mechanism models.