Local thermal magnetization fluctuations in Li-doped MnTe are found to increase its thermopower α strongly at temperatures up to 900 K. Below the Néel temperature ( T N ~ 307 K), MnTe is antiferromagnetic, and magnon drag contributes α md to the thermopower, which scales as ~ T 3 . Magnon drag persists into the paramagnetic state up to >3 × T N because of long-lived, short-range antiferromagnet-like fluctuations (paramagnons) shown by neutron spectroscopy to exist in the paramagnetic state. The paramagnon lifetime is longer than the charge carrier–magnon interaction time; its spin-spin spatial correlation length is larger than the free-carrier effective Bohr radius and de Broglie wavelength. Thus, to itinerant carriers, paramagnons look like magnons and give a paramagnon-drag thermopower. This contribution results in an optimally doped material having a thermoelectric figure of merit ZT > 1 at T > ~900 K, the first material with a technologically meaningful thermoelectric energy conversion efficiency from a spin-caloritronic effect.
more »
« less
Magnon-drag thermopower in antiferromagnets versus ferromagnets
The extension of magnon electron drag (MED) to the paramagnetic domain has recently shown that it can create a thermopower more significant than the classical diffusion thermopower resulting in a thermoelectric figure-of-merit greater than unity. Due to their distinct nature, ferromagnetic (FM) and antiferromagnetic (AFM) magnons interact differently with the carriers and generate different amounts of drag-thermopower. The question arises of whether the MED is stronger in FM or in AFM semiconductors. Two material systems, namely MnSb and CrSb, which are similar in many aspects except that the former is FM and the latter AFM, were studied in detail, and their MED properties were compared. Three features of AFMs compared to FMs, namely double degeneracy of the magnon modes, higher magnon group velocity, and longer magnon relaxation time, can lead to enhanced first-order MED thermopower. One effect, magnon–electron relaxation, leads to a higher second-order effect in AFMs that reduces the MED thermopower. However, it is generally expected that the first-order effect dominates and leads to a higher drag thermopower in AFMs, as seen in this case study.
more »
« less
- Award ID(s):
- 1711253
- PAR ID:
- 10191230
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 8
- Issue:
- 12
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 4049 to 4057
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Thermoelectric materials, capable of converting temperature gradients into electrical power, have been traditionally limited by a trade‐off between thermopower and electrical conductivity. This study introduces a novel, broadly applicable approach that enhances both the spin‐driven thermopower and the thermoelectric figure‐of‐merit (zT) without compromising electrical conductivity, using temperature‐driven spin crossover. Our approach, supported by both theoretical and experimental evidence, is demonstrated through a case study of chromium doped‐manganese telluride, but is not confined to this material and can be extended to other magnetic materials. By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature‐driven spin crossover, we achieved a significant increase in thermopower, by approximately 136 μV K−1, representing more than a 200% enhancement at elevated temperatures within the paramagnetic domain. Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon‐drag thermopower is key to understanding and utilizing spin crossover‐driven thermopower. These findings, validated by inelastic neutron scattering, X‐ray photoemission spectroscopy, thermal transport, and energy conversion measurements, shed light on crucial material design parameters. We provide a comprehensive framework that analyzes the interplay between spin entropy, hopping transport, and magnon/paramagnon lifetimes, paving the way for the development of high‐performance spin‐driven thermoelectric materials.more » « less
-
Abstract Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent sub-terahertz (THz) magnons in ferromagnetic (FM) and antiferromagnetic (AFM) thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are also performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject sub-THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Using a dynamical phase-field model that considers the coupled dynamics of acoustic waves, spin waves, and EM waves, we show that the emitted EM wave retains the spectral information of all the sub-THz magnon modes and has a sufficiently large amplitude for near-field detection. These predictions indicate that the excitation and detection of sub-THz magnons can be realized in rationally designed FM or AFM thin-film heterostructures via ultrafast optical-pump THz-emission-probe spectroscopy.more » « less
-
Realization of ferromagnetic (FM) interlayer coupling in magnetic topological insulators (TIs) of the MnBi 2 Te 4 family of materials (MBTs) may pave the way for realizing the high-temperature quantum anomalous Hall effect (high- T QAHE). Here we propose a generic dual d-band (DDB) model to elucidate the energy difference (Δ E = E AFM − E FM ) between the AFM and FM coupling in transition-metal (TM)-doped MBTs, where the valence of TMs splits into d-t 2g and d-e g sub-bands. Remarkably, the DDB shows that Δ E is universally determined by the relative position of the dopant (X) and Mn d-e g / t 2g bands, . If Δ E d > 0, then Δ E > 0 and the desired FM coupling is favored. This surprisingly simple rule is confirmed by first-principles calculations of hole-type 3d and 4d TM dopants. Significantly, by applying the DDB model, we predict the high- T QAHE in the V-doped Mn 2 Bi 2 Te 5 , where the Curie temperature is enhanced by doubling of the MnTe layer, while the topological order mitigated by doping can be restored by strain.more » « less
-
Optical detection of magnetic resonance using quantum spin sensors (QSSs) provides a spatially local and sensitive technique to probe spin dynamics in magnets. However, its utility as a probe of antiferromagnetic resonance (AFMR) remains an open question. We report the experimental demonstration of optically detected AFMR in layered van der Waals antiferromagnets (AFM) up to frequencies of 24 gigahertz. We leverage QSS spin relaxation due to low-frequency magnetic field fluctuations arising from collective dynamics of magnons excited by the uniform AFMR mode. First, through AFMR spectroscopy, we characterize the intrinsic exchange fields and magnetic anisotropies of the AFM. Second, using the localized sensitivity of the QSS, we demonstrate magnon transport over tens of micrometers. Last, we find that optical detection efficiency increases with increasing frequency. This showcases the dual capabilities of QSS as detectors of high-frequency magnetization dynamics and magnon transport, paving the way for understanding and controlling the magnetism of antiferromagnets.more » « less
An official website of the United States government

