skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnon-drag thermopower in antiferromagnets versus ferromagnets
The extension of magnon electron drag (MED) to the paramagnetic domain has recently shown that it can create a thermopower more significant than the classical diffusion thermopower resulting in a thermoelectric figure-of-merit greater than unity. Due to their distinct nature, ferromagnetic (FM) and antiferromagnetic (AFM) magnons interact differently with the carriers and generate different amounts of drag-thermopower. The question arises of whether the MED is stronger in FM or in AFM semiconductors. Two material systems, namely MnSb and CrSb, which are similar in many aspects except that the former is FM and the latter AFM, were studied in detail, and their MED properties were compared. Three features of AFMs compared to FMs, namely double degeneracy of the magnon modes, higher magnon group velocity, and longer magnon relaxation time, can lead to enhanced first-order MED thermopower. One effect, magnon–electron relaxation, leads to a higher second-order effect in AFMs that reduces the MED thermopower. However, it is generally expected that the first-order effect dominates and leads to a higher drag thermopower in AFMs, as seen in this case study.  more » « less
Award ID(s):
1711253
PAR ID:
10191230
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
8
Issue:
12
ISSN:
2050-7526
Page Range / eLocation ID:
4049 to 4057
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Local thermal magnetization fluctuations in Li-doped MnTe are found to increase its thermopower α strongly at temperatures up to 900 K. Below the Néel temperature ( T N ~ 307 K), MnTe is antiferromagnetic, and magnon drag contributes α md to the thermopower, which scales as ~ T 3 . Magnon drag persists into the paramagnetic state up to >3 × T N because of long-lived, short-range antiferromagnet-like fluctuations (paramagnons) shown by neutron spectroscopy to exist in the paramagnetic state. The paramagnon lifetime is longer than the charge carrier–magnon interaction time; its spin-spin spatial correlation length is larger than the free-carrier effective Bohr radius and de Broglie wavelength. Thus, to itinerant carriers, paramagnons look like magnons and give a paramagnon-drag thermopower. This contribution results in an optimally doped material having a thermoelectric figure of merit ZT > 1 at T > ~900 K, the first material with a technologically meaningful thermoelectric energy conversion efficiency from a spin-caloritronic effect. 
    more » « less
  2. Thermoelectric materials, capable of converting temperature gradients into electrical power, have been traditionally limited by a trade‐off between thermopower and electrical conductivity. This study introduces a novel, broadly applicable approach that enhances both the spin‐driven thermopower and the thermoelectric figure‐of‐merit (zT) without compromising electrical conductivity, using temperature‐driven spin crossover. Our approach, supported by both theoretical and experimental evidence, is demonstrated through a case study of chromium doped‐manganese telluride, but is not confined to this material and can be extended to other magnetic materials. By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature‐driven spin crossover, we achieved a significant increase in thermopower, by approximately 136 μV K−1, representing more than a 200% enhancement at elevated temperatures within the paramagnetic domain. Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon‐drag thermopower is key to understanding and utilizing spin crossover‐driven thermopower. These findings, validated by inelastic neutron scattering, X‐ray photoemission spectroscopy, thermal transport, and energy conversion measurements, shed light on crucial material design parameters. We provide a comprehensive framework that analyzes the interplay between spin entropy, hopping transport, and magnon/paramagnon lifetimes, paving the way for the development of high‐performance spin‐driven thermoelectric materials. 
    more » « less
  3. Abstract Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent sub-terahertz (THz) magnons in ferromagnetic (FM) and antiferromagnetic (AFM) thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are also performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject sub-THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Using a dynamical phase-field model that considers the coupled dynamics of acoustic waves, spin waves, and EM waves, we show that the emitted EM wave retains the spectral information of all the sub-THz magnon modes and has a sufficiently large amplitude for near-field detection. These predictions indicate that the excitation and detection of sub-THz magnons can be realized in rationally designed FM or AFM thin-film heterostructures via ultrafast optical-pump THz-emission-probe spectroscopy. 
    more » « less
  4. Realization of ferromagnetic (FM) interlayer coupling in magnetic topological insulators (TIs) of the MnBi 2 Te 4 family of materials (MBTs) may pave the way for realizing the high-temperature quantum anomalous Hall effect (high- T QAHE). Here we propose a generic dual d-band (DDB) model to elucidate the energy difference (Δ E = E AFM − E FM ) between the AFM and FM coupling in transition-metal (TM)-doped MBTs, where the valence of TMs splits into d-t 2g and d-e g sub-bands. Remarkably, the DDB shows that Δ E is universally determined by the relative position of the dopant (X) and Mn d-e g / t 2g bands, . If Δ E d > 0, then Δ E > 0 and the desired FM coupling is favored. This surprisingly simple rule is confirmed by first-principles calculations of hole-type 3d and 4d TM dopants. Significantly, by applying the DDB model, we predict the high- T QAHE in the V-doped Mn 2 Bi 2 Te 5 , where the Curie temperature is enhanced by doubling of the MnTe layer, while the topological order mitigated by doping can be restored by strain. 
    more » « less
  5. The interplay between magnetism and quantum effects has motivated several thermoelectric studies on iron‐telluride yet with little insight on the anomalous features in transport properties near magnetostructural transition temperature (≈70 K). A detailed investigation is carried out on Fe1.1Te by characterizing magnetic, heat capacity, galvanomagnetic, and thermoelectric transport properties to understand the electronic, magnetic, and structural origin of those anomalies. The magnetic susceptibility indicates a bicollinear stripe and short‐range ordering in the antiferromagnetic and paramagnetic domains, respectively. Hall conductivity and transverse magnetoresistance reveal a multicarrier transport impacted by spin fluctuations and magnons. Contributions from phonon‐drag and magnon‐drag are evaluated to understand the origin of the broad peak in antiferromagnetic thermopower. The peak at ≈50 K and the insignificant entropy contribution from the magnonic heat capacity support the phonon‐drag as the origin. The field‐dependent enhancement of thermal conductivity must be associated with field‐dependent spin‐phonon coupling modification. The field‐induced thermopower reduction can be attributed to the suppression of magnons or paramagnons, as evidenced by the magnetic susceptibility data. Above 70 K, the thermal conductivity drops sharply due to the structural change modifying phonon modes. Understanding these properties originated from the spin, and quantum effects are instrumental for designing high‐performance spin‐driven thermoelectrics. 
    more » « less