skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complex In-Hand Manipulation Via Compliance-Enabled Finger Gaiting and Multi-Modal Planning
Constraining contacts to remain fixed on an object during manipulation limits the potential workspace size, as motion is subject to the hand’s kinematic topology. Finger gaiting is one way to alleviate such restraints. It allows contacts to be freely broken and remade so as to operate on different manipulation manifolds. This capability, however, has traditionally been difficult or impossible to practically realize. A finger gaiting system must simultaneously plan for and control forces on the object while maintaining stability during contact switching. This letter alleviates the traditional requirement by taking advantage of system compliance, allowing the hand to more easily switch contacts while maintaining a stable grasp. Our method achieves complete SO(3) finger gaiting control of grasped objects against gravity by developing a manipulation planner that operates via orthogonal safe modes of a compliant, underactuated hand absent of tactile sensors or joint encoders. During manipulation, a low-latency 6D pose object tracker provides feedback via vision, allowing the planner to update its plan online so as to adaptively recover from trajectory deviations. The efficacy of this method is showcased by manipulating both convex and non-convex objects on a real robot. Its robustness is evaluated via perturbation rejection and long trajectory goals. To the best of the authors’ knowledge, this is the first work that has autonomously achieved full SO(3) control of objects within-hand via finger gaiting and without a support surface, elucidating a valuable step towards realizing true robot in-hand manipulation capabilities.  more » « less
Award ID(s):
1734492 1900681
PAR ID:
10354879
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
7
Issue:
2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores the problem of autonomous, in-hand regrasping-the problem of moving from an initial grasp on an object to a desired grasp using the dexterity of a robot's fingers. We propose a planner for this problem which alternates between finger gaiting, and in-grasp manipulation. Finger gaiting enables the robot to move a single finger to a new contact location on the object, while the remaining fingers stably hold the object. In-grasp manipulation moves the object to a new pose relative to the robot's palm, while maintaining the contact locations between the hand and object. Given the object's geometry (as a mesh), the hand's kinematic structure, and the initial and desired grasps, we plan a sequence of finger gaits and object reposing actions to reach the desired grasp without dropping the object. We propose an optimization based approach and report in-hand regrasping plans for 5 objects over 5 in-hand regrasp goals each. The plans generated by our planner are collision free and guarantee kinematic feasibility. 
    more » « less
  2. In recent years, the field of legged robotics has seen growing interest in enhancing the capabilities of these robots through the integration of articulated robotic arms. However, achieving successful loco-manipulation, especially involving interaction with heavy objects, is far from straightforward, as object manipulation can introduce substantial disturbances that impact the robot’s locomotion. This paper presents a novel framework for legged loco-manipulation that considers whole-body coordination through a hierarchical optimization-based control framework. First, an online manipulation planner computes the manipulation forces and manipulated object task-based reference trajectory. Then, pose optimization aligns the robot’s trajectory with kinematic constraints. The resultant robot reference trajectory is executed via a linear MPC controller incorporating the desired manipulation forces into its prediction model. Our approach has been validated in simulation and hardware experiments, highlighting the necessity of whole-body optimization compared to the baseline locomotion MPC when interacting with heavy objects. Experimental results with Unitree Aliengo, equipped with a custom-made robotic arm, showcase its ability to lift and carry an 8kg payload and manipulate doors. 
    more » « less
  3. This work proposes a framework for tracking a desired path of an object held by an adaptive hand via within-hand manipulation. Such underactuated hands are able to passively achieve stable contacts with objects. Combined with vision-based control and data-driven state estimation process, they can solve tasks without accurate hand-object models or multi-modal sensory feedback. In particular, a data-driven regression process is used here to estimate the probability of dropping the object for given manipulation states. Then, an optimization-based planner aims to track the desired path while avoiding states that are above a threshold probability of dropping the object. The optimized cost function, based on the principle of Dynamic-Time Warping (DTW), seeks to minimize the area between the desired and the followed path. By adapting the threshold for the probability of dropping the object, the framework can handle objects of different weights without retraining. Experiments involving writing letters with a marker, as well as tracing randomized paths, were conducted on the Yale Model T-42 hand. Results indicate that the framework successfully avoids undesirable states, while minimizing the proposed cost function, thereby producing object paths for within-hand manipulation that closely match the target ones. 
    more » « less
  4. We present a method that finds locomanipulation plans that perform simultaneous locomotion and manipulation of objects for a desired end-effector trajectory. Key to our approach is to consider an injective locomotion constraint manifold that defines the locomotion scheme of the robot and then using this constraint manifold to search for admissible manipulation trajectories. The problem is formulated as a weighted-A* graph search whose planner output is a sequence of contact transitions and a path progression trajectory to construct the whole-body kinodynamic locomanipulation plan. We also provide a method for computing, visualizing, and learning the locomanipulability region, which is used to efficiently evaluate the edge transition feasibility during the graph search. Numerical simulations are performed with the NASA Valkyrie robot platform that utilizes a dynamic locomotion approach, called the divergent-component-of-motion (DCM), on two example locomanipulation scenarios. 
    more » « less
  5. It is imperative that robots can understand natural language commands issued by humans. Such commands typically contain verbs that signify what action should be performed on a given object and that are applicable to many objects. We propose a method for generalizing manipulation skills to novel objects using verbs. Our method learns a probabilistic classifier that determines whether a given object trajectory can be described by a specific verb. We show that this classifier accurately generalizes to novel object categories with an average accuracy of 76.69% across 13 object categories and 14 verbs. We then perform policy search over the object kinematics to find an object trajectory that maximizes classifier prediction for a given verb. Our method allows a robot to generate a trajectory for a novel object based on a verb, which can then be used as input to a motion planner. We show that our model can generate trajectories that are usable for executing five verb commands applied to novel instances of two different object categories on a real robot. 
    more » « less