Abstract Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics.
more »
« less
Extended conjugated borenium dimers via late stage functionalization of air-stable borepinium ions
Applications of highly electron-deficient organoborenium ions in conjugated materials remain scarce due to their low stability toward air and moisture. We report here the preparation of benzo[ d ]dithieno[ b , f ]borepinium ions as air-stable π-conjugated heterocycles and their conversion into the first dimeric borenium cations, which exhibit very low lying LUMOs and enhanced fluorescence as a result of extended conjugation.
more »
« less
- Award ID(s):
- 1664975
- PAR ID:
- 10191591
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 56
- Issue:
- 38
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 5119 to 5122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The nanoscale structure and macroscopic morphology of π-conjugated polymers are very important for their electronic application. While ordered single crystals of small molecules have been obtained via solution deposition, macroscopically aligned films of π-conjugated polymers deposited directly from solution have always required surface modification or complex pre-deposition processing of the solution. Here, ordered nanowires were obtained via shear-enhanced crystallization of π-conjugated polymers at the air–liquid–solid interface using simple deposition of the polymer solution onto an inclined substrate. The formation of macroscopically aligned nanowire arrays was found to be due to the synergy between intrinsic (π-conjugated backbone) and external (crystallization conditions) effects. The oriented nanowires showed remarkable improvement in the charge carrier mobility compared to spin-coated films as characterized in organic field-effect transistors (OFETs). Considering the simplicity and large-scale applicability, shear-enhanced crystallization of π-conjugated polymers provides a promising strategy to achieve high-performance polymer semiconductor films for electronics applications.more » « less
-
Conjugated microporous polymers (CMPs) are porous organic materials that display (semi)conducting behavior due to their highly π-conjugated structures, making them promising next-generation materials for applications requiring both electrical conductivity and porosity. Currently, most CMPs and related porous aromatic frameworks (PAFs) are prepared using expensive transition metals (e.g., Pd), significantly increasing the costs associated with their synthesis. Lewis acid-mediated cyclotrimerization reactions of methyl ketones and nitriles represent promising and green alternative methods for CMP and PAF synthesis. Herein, we demonstrate that the generality of the solvent-free cyclotrimerization reactions is significantly improved by using ZnBr2 instead of ZnCl2 as the ionothermal medium. Specifically, we show that 1,4-diacetylbenzene (DAB), 4,4′-diacetylbiphenyl (DABP), 2,7-diacetylfluorene (DAF), 1,3,5-triacetylbenzene (TAB), tetrakis(4-acetylphenyl)methane (TAPM), and 1,4-dicyanobenzene (DCNB) can be polymerized in molten ZnBr2 to produce highly conjugated and microporous materials, as confirmed by 77 K N2 adsorption measurements, IR, and solid-state NMR. These findings support that ZnBr2 is an excellent Lewis acid mediator and medium for the ionothermal synthesis of porous organic materials.more » « less
-
The United Nations (UN) estimates that more than one billion people in this world do not have access to safe drinking water due to microbial hazards and it kills more than 7.6 million children every year via waterborne diseases. Driven by the need for the removal and inactivation of waterborne pathogens in drinking water, we report the chemical design and details of microscopic characterization of a bio-conjugated chitosan attached carbon nanotube based three dimensional (3D) nanoporous architecture, which has the capability for effective separation and complete disinfection of waterborne pathogens from environmental water samples. In the reported design, chitosan, a biodegradable antimicrobial polysaccharide with an architecture-forming ability has been used for the formation of 3D pores as channels for water passage, as well as to increase the permeability on the inner and outer architectures for killing Rotavirus and Shigella waterborne pathogens. On the other hand, due to their large surface area, CNTs have been wrapped by chitosan to enhance the adsorption capability of the architecture for the separation and removal of pathogens from water. The reported data show that the anti- Rotavirus VP7 antibody and LL-37 antimicrobial peptide conjugated chitosan–CNT architecture can be used for efficient separation, identification and 100% eradication of Rotavirus and Shigella waterborne pathogens from water samples of different sources. A detailed mechanism for the separation and inactivation of waterborne pathogens using the bio-conjugated chitosan based 3D architecture has been discussed using microscopic and spectroscopic studies. Reported experimental data demonstrate that the multifunctional bio-conjugated 3D architecture has good potential for use in waterborne pathogen separation and inactivation technology.more » « less
-
Abstract Synthetic helical polymers form compact, ordered, and inherently chiral structures, enabling their uses in biomimetic applications as well as catalysis. A challenge in using synthetic helical polymers, however, is their tendency to be sensitive to pH and the presence of nucleophiles, Lewis‐acids, or metal ions. We report a strategy to overcome these shortcomings by adapting catalyst‐transfer polymerization, a living chain‐growth polymerization typically used to access linear conjugated polymers, for the synthesis of helical poly(thiophene)s. We demonstrate that the helical poly(thiophene)s can be synthesized with a single helicity, incorporated into block copolymers, and functionalized at the chain‐ends, enabling further conjugation and functionalization. The helical poly(thiophene)s are stable to a variety of conditions, providing benefits over other helical polymers which contain sensitive imine or carbonyl‐based functional groups. We anticipate that the ability to access homochiral, heterotelechelic helical conjugated polymers and copolymers will enable new uses of these materials in optoelectronics as well as in applications for mimicking biomacromolecules and other polymers with precisely defined sequences.more » « less
An official website of the United States government

