We describe a strategy of integrating quantum mechanical (QM), hybrid quantum mechanical/molecular mechanical (QM/MM) and MM simulations to analyze the physical properties of a solid/water interface. This protocol involves using a correlated ab initio (CCSD(T)) method to first calibrate Density Functional Theory (DFT) as the QM approach, which is then used in QM/MM simulations to compute relevant free energy quantities at the solid/water interface using a mean-field approximation of Yang et al. that decouples QM and MM thermal fluctuations; gas-phase QM/MM and periodic DFT calculations are used to determine the proper QM size in the QM/MM simulations. Finally, the QM/MM free energy results are compared with those obtained from MM simulations to directly calibrate the force field model for the solid/water interface. This protocol is illustrated by examining the orientations of an alkyl amine ligand at the gold/water interface, since the ligand conformation is expected to impact the chemical properties ( e.g. , charge) of the solid surface. DFT/MM and MM simulations using the INTERFACE force field lead to consistent results, suggesting that the effective gold/ligand interactions can be adequately described by a van der Waals model, while electrostatic and induction effects are largely quenched by solvation. The observed differences among periodic DFT, QM/MM and MM simulations, nevertheless, suggest that explicitly including electronic polarization and potentially charge transfer in the MM model can be important to the quantitative accuracy. The strategy of integrating multiple computational methods to cross-validate each other for complex interfaces is applicable to many problems that involve both inorganic/metallic and organic/biomolecular components, such as functionalized nanoparticles. 
                        more » 
                        « less   
                    
                            
                            Artificial intelligence-enhanced quantum chemical method with broad applicability
                        
                    
    
            Abstract High-level quantum mechanical (QM) calculations are indispensable for accurate explanation of natural phenomena on the atomistic level. Their staggering computational cost, however, poses great limitations, which luckily can be lifted to a great extent by exploiting advances in artificial intelligence (AI). Here we introduce the general-purpose, highly transferable artificial intelligence–quantum mechanical method 1 (AIQM1). It approaches the accuracy of the gold-standard coupled cluster QM method with high computational speed of the approximate low-level semiempirical QM methods for the neutral, closed-shell species in the ground state. AIQM1 can provide accurate ground-state energies for diverse organic compounds as well as geometries for even challenging systems such as large conjugated compounds (fullerene C 60 ) close to experiment. This opens an opportunity to investigate chemical compounds with previously unattainable speed and accuracy as we demonstrate by determining geometries of polyyne molecules—the task difficult for both experiment and theory. Noteworthy, our method’s accuracy is also good for ions and excited-state properties, although the neural network part of AIQM1 was never fitted to these properties. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2041108
- PAR ID:
- 10319555
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Reliable simulations of molecules in condensed phase require the combination of an accurate quantum mechanical method for the core region, and a realistic model to describe the interaction with the environment. Additionally, this combination should not significantly increase the computational cost of the calculation compared to the corresponding in vacuo case. In this review, we describe the combination of methods based on coupled cluster (CC) theory with polarizable classical models for the environment. We use the polarizable continuum model (PCM) of solvation to discuss the equations, but we also show how the same theoretical framework can be extended to polarizable force fields. The theory is developed within the perturbation theory energy and singles‐T density (PTES) scheme, where the environmental response is computed with the CC single excitation amplitudes as an approximation for the full one‐particle reduced density. The CC‐PTES combination provides the best compromise between accuracy and computational effort for CC calculations in condensed phase, because it includes the response of the environment to the correlation density at the same computational cost of in vacuo CC. We discuss a number of numerical applications for ground and excited state properties, based on the implementation of CC‐PTES with single and double excitations (CCSD‐PTES), which show the reliability and computational efficiency of the method in reproducing experimental or full‐CC data. This article is characterized under:Electronic Structure Theory > Ab Initio Electronic Structure MethodsElectronic Structure Theory > Combined QM/MM MethodsSoftware > Quantum Chemistrymore » « less
- 
            Methods which accurately predict protein – ligand binding strengths are critical for drug discovery. In the last two decades, advances in chemical modelling have enabled steadily accelerating progress in the discovery and optimization of structure-based drug design. Most computational methods currently used in this context are based on molecular mechanics force fields that often have deficiencies in describing the quantum mechanical (QM) aspects of molecular binding. In this study, we show the competitiveness of our QM-based Molecules-in-Molecules (MIM) fragmentation method for characterizing binding energy trends for seven different datasets of protein – ligand complexes. By using molecular fragmentation, the MIM method allows for accelerated QM calculations. We demonstrate that for classes of structurally similar ligands bound to a common receptor, MIM provides excellent correlation to experiment, surpassing the more popular Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) methods. The MIM method offers a relatively simple, well-defined protocol by which binding trends can be ascertained at the QM level and is suggested as a promising option for lead optimization in structure-based drug design.more » « less
- 
            We present a reformulation of QM/MM as a fully quantum mechanical theory of interacting subsystems, all treated at the level of density functional theory (DFT). For the MM subsystem, which lacks orbitals, we assign an ad hoc electron density and apply orbital-free DFT functionals to describe its quantum properties. The interaction between the QM and MMsubsystems is also treated using orbital-free density functionals, accounting for Coulomb interactions, exchange, correlation, and Pauli repulsion. Consistency across QM and MM subsystems is ensured by employing data-driven, many-body MM force fields that faithfully represent DFT functionals. Applications to water-solvated systems demonstrate that this approach achieves unprecedented, very rapid convergence to chemical accuracy as the size of the QM subsystem increases. We validate the method with several pilot studies, including water bulk, water clusters (prism hexamer and pentamers), solvated glucose, a palladium aqua ion, and a wet monolayer of MoS2.more » « less
- 
            Proper theoretical descriptions of ground and excited states are critical for understanding molecular photophysics and photochemistry. Complex interactions in experimentally interesting molecular systems require multiple approximations of the underlying quantum mechanics to practically solve for various physical observables. While high-level calculations of small molecular systems provide very accurate excitation energies, this accuracy does not always extend to larger systems or other properties. Because of this, the “best” method to study new molecules is not always clear, leading many researchers to default to inexpensive and easy-to-use black-box methods. Unfortunately, even when these methods reproduce experimental excitation energies, it is not necessarily for the right reasons. Without accurate descriptions of the underlying physics, it becomes challenging to understand new classes of molecules. Consequently, predicted properties and their trends may not offer reliable mechanistic understanding. This review is targeted at beginners in computational chemistry who are interested in studying excited-state properties. A brief overview of common ground- and excited-state methods are covered for easy reference during the comparison of methods. The primary focus of this review is to compare the accuracy of these methods for several important classes of chromophores. The performance and accuracy of each method are explored to provide practitioners a road map on what methods work well for different molecular systems and identify further work that needs to be done in the field.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    