skip to main content


Title: Concept-Level Design Analytics for Blended Courses
Although many efforts are being made to provide educators with dashboards and tools to understand student behaviors within specific technological environments (learning analytics), there is a lack of work in supporting educators in making data-informed design decisions when designing a blended course and planning learning activities. In this paper, we introduce concept-level design analytics, a knowledge-based visualization, which uncovers facets of the learning activities that are being authored. The visualization is integrated into a (blended) learning design authoring tool, edCrumble. This new approach is explored in the context of a higher education programming course, where teaching assistants design labs and home practice sessions with online smart learning content on a weekly basis. We performed a within-subjects user study to compare the use of the design tool both with and without the visualization. We studied the differences in terms of cognitive load, design outcomes and user actions within the system to compare both conditions to the objective of evaluating the impact of using design analytics during the decision-making phase of course design.  more » « less
Award ID(s):
1740775
NSF-PAR ID:
10191769
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of 14th European Conference on Technology Enhanced Learning (EC-TEL 2019)
Page Range / eLocation ID:
541–554
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Over the last 10 years, learning analytics have provided educators with both dashboards and tools to understand student behaviors within specific technological environments. However, there is a lack of work to support educators in making data-informed design decisions when designing a blended course and planning appropriate learning activities. In this paper, we introduce knowledge-based design analytics that uncover facets of the learning activities that are being created. A knowledge-based visualization is integrated into edCrumble, a (blended) learning design authoring tool. This new approach is explored in the context of a higher education programming course, where instructors design labs and home practice sessions with online smart learning content on a weekly basis. We performed a within-subjects user study to compare the use of the design tool both with and without visualization. We studied the differences in terms of cognitive load, controllability, confidence and ease of choice, design outcomes, and user actions within the system to compare both conditions with the objective of evaluating the impact of using design analytics during the decision-making phase of course design. Our results indicate that the use of a knowledge-based visualization allows the teachers to reduce the cognitive load (especially in terms of mental demand) and that it facilitates the choice of the most appropriate activities without affecting the overall design time. In conclusion, the use of knowledge-based design analytics improves the overall learning design quality and helps teachers avoid committing design errors. 
    more » « less
  2. Abstract  
    more » « less
  3. null (Ed.)
    Currently, there is no formal taxonomy for the activities that users engage in when interacting with and making meaning from spatio-temporal game data visualizations. As data visualization, especially spatio-temporal visualization, becomes more popular for game data analytics, it becomes increasingly crucial that we develop a formal understanding of how users, especially players, interact with and extract meaning from game data using these systems. However, existing taxonomies developed for InfoVis are not directly applicable due to domain differences and a lack of consensus within the literature. This paper presents the beginnings of a taxonomy for user interaction with spatio-temporal data specific to the domain of games, developed from the results of a qualitative user study (n=7) in which experienced players were tasked with using a spatio-temporal visualization system to explore and understand telemetry data from Defense of the Ancients 2 (DotA 2). The taxonomy includes seven activities organized into three categories: Data Interaction, Sense Making, and Validation. We discuss the implications of these activities on design and future research. 
    more » « less
  4. Abstract

    In multiple watershed planning and design problems, such as conservation planning, quantitative estimates of costs, and environmental benefits of proposed conservation decisions may not be the only criteria that influence stakeholders' preferences for those decisions. Their preferences may also be influenced by the conservation decision itself—specifically, the type of practice, where it is being proposed, existing biases, and previous experiences with the practice. While human‐in‐the‐loop type search techniques, such as Interactive Genetic Algorithms (IGA), provide opportunities for stakeholders to incorporate their preferences in the design of alternatives, examination of user‐preferred conservation design alternatives for patterns in Decision Space can provide insights into which local decisions have higher or lower agreement among stakeholders. In this paper, we explore and compare spatial patterns in conservation decisions (specifically involving cover crops and filter strips) within design alternatives generated by IGA and noninteractive GA. Methods for comparing patterns include nonvisual as well as visualization approaches, including a novel visual analytics technique. Results for the study site show that user‐preferred designs generated by all participants had strong bias for cover crops in a majority (50%–83%) of the subbasins. Further, exploration with heat maps visualization indicate that IGA‐based search yielded very different spatial patterns of user‐preferred decisions in subbasins in comparison to decisions within design alternatives that were generated without the human‐in‐the‐loop. Finally, the proposed coincident‐nodes, multiedge graph visualization was helpful in visualizing disagreement among participants in local subbasin scale decisions, and for visualizing spatial patterns in local subbasin scale costs and benefits.

     
    more » « less
  5. This paper introduces a web-based interactive educational platform for 3D/polyhedral graphic statics (PGS) [1]. The Block Research Group (BRG) at ETH Zürich developed a dynamic learning and teaching platform for structural design. This tool is based on traditional graphic statics. It uses interactive 2D drawings to help designers and engineers with all skill levels to understand and utilize the methods [2]. However, polyhedral graphic statics is not easy to learn because of its characteristics in three-dimensional. All the existing computational design tools are heavily dependent on the modeling software such as Rhino or the Python-based computational framework like Compass [3]. In this research, we start with the procedural approach, developing libraries using JavaScript, Three.js, and WebGL to facilitate the construction by making it independent from any software. This framework is developed based on the mathematical and computational algorithms deriving the global equilibrium of the structure, optimizing the balanced relationship between the external magnitudes and the internal forces, visualizing the dynamic reciprocal polyhedral diagrams with corresponding topological data. This instant open-source application and the visualization interface provide a more operative platform for students, educators, practicers, and designers in an interactive manner, allowing them to learn not only the topological relationship but also to deepen their knowledge and understanding of structures in the steps for the construction of the form and force diagrams and analyze it. In the simplified single-node example, the multi-step geometric procedures intuitively illustrate 3D structural reciprocity concepts. With the intuitive control panel, the user can move the constraint point’s location through the inserted gumball function, the force direction of the form diagram will be dynamically changed from compression-only to tension and compression combined. Users can also explore and design innovative, efficient spatial structures with changeable boundary conditions and constraints through real-time manipulating both force distribution and geometric form, such as adding the number of supports or subdividing the global equilibrium in the force diagram. Eventually, there is an option to export the satisfying geometry as a suitable format to share with other fabrication tools. As the online educational environment with different types of geometric examples, it is valuable to use graphical approaches to teach the structural form in an exploratory manner. 
    more » « less