The majority of current smart health applications are deployed on a smartphone paired with a smartwatch. The phone is used as the computation platform or the gateway for connecting to the cloud while the watch is used mainly as the data sensing device. In the case of fall detection applications for older adults, this kind of setup is not very practical since it requires users to always keep their phones in proximity while doing the daily chores. When a person falls, in a moment of panic, it might be difficult to locate the phone in order to interact with the Fall Detection App for the purpose of indicating whether they are fine or need help. This paper demonstrates the feasibility of running a real-time personalized deep-learning-based fall detection system on a smartwatch device using a collaborative edge-cloud framework. In particular, we present the software architecture we used for the collaborative framework, demonstrate how we automate the fall detection pipeline, design an appropriate UI on the small screen of the watch, and implement strategies for the continuous data collection and automation of the personalization process with the limited computational and storage resources of a smartwatch. We also present the usability of such a system with nine real-world older adult participants.
more »
« less
SoundWatch: deep learning for sound accessibility on smartwatches
Smartwatches have the potential to provide glanceable, always-available sound feedback to people who are deaf or hard of hearing (DHH). We present SoundWatch, a smartwatch-based deep learning application to sense, classify, and provide feedback about sounds occurring in the environment. To design SoundWatch, we first examined four low-resource sound classification models across four device architectures: watch-only, watch+phone, watch+phone+cloud, and watch+cloud. We found that the best model, VGG-lite, performed similar to the state of the art for nonportable devices although requiring substantially less memory (∼1/3rd) and that the watch+phone architecture provided the best balance among CPU, memory, network usage, and latency. Based on these results, we built and conducted a lab evaluation of our smartwatch app with eight DHH participants. We found support for our sound classification app but also uncovered concerns with misclassifications, latency, and privacy.
more »
« less
- Award ID(s):
- 1763199
- PAR ID:
- 10603385
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Communications of the ACM
- Volume:
- 65
- Issue:
- 6
- ISSN:
- 0001-0782
- Format(s):
- Medium: X Size: p. 100-108
- Size(s):
- p. 100-108
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To investigate preferences for mobile and wearable sound awareness systems, we conducted an online survey with 201 DHH participants. The survey explores how demographic factors affect perceptions of sound awareness technologies, gauges interest in specific sounds and sound characteristics, solicits reactions to three design scenarios (smartphone, smartwatch, head-mounted display) and two output modalities (visual, haptic), and probes issues related to social context of use. While most participants were highly interested in being aware of sounds, this interest was modulated by communication preference--that is, for sign or oral communication or both. Almost all participants wanted both visual and haptic feedback and 75% preferred to have that feedback on separate devices (e.g., haptic on smartwatch, visual on head-mounted display). Other findings related to sound type, full captions vs. keywords, sound filtering, notification styles, and social context provide direct guidance for the design of future mobile and wearable sound awareness systems.more » « less
-
The slowdown of Moore’s Law, combined with advances in 3D stacking of logic and memory, have pushed architects to revisit the concept of processing-in-memory (PIM) to overcome the memory wall bottleneck. This PIM renaissance finds itself in a very different computing landscape from the one twenty years ago, as more and more computation shifts to the cloud. Most PIM architecture papers still focus on best-effort applications, while PIM’s impact on latency-critical cloud applications is not well understood. This paper explores how datacenters can exploit PIM architectures in the context of latency-critical applications. We adopt a general-purpose cloud server with HBM-based, 3D-stacked logic+memory modules, and study the impact of PIM on six diverse interactive cloud applications. We reveal the previously neglected opportunity that PIM presents to these services, and show the importance of properly managing PIM-related resources to meet the QoS targets of interactive services and maximize resource efficiency. Then, we present PIMCloud, a QoS-aware resource manager designed for cloud systems with PIM allowing colocation of multiple latency-critical and best-effort applications. We show that PIMCloud efficiently manages PIM resources: it (1) improves effective machine utilization by up to 70% and 85% (average 24% and 33%) under 2-app and 3-app mixes, compared to the best state-of-the-art manager; (2) helps latency-critical applications meet QoS; and (3) adapts to varying load patterns.more » « less
-
Wearable devices, such as smart watches and fitness trackers are growing in popularity, creating a need for application developers to adapt or extend a UI, typically from a smartphone, onto these devices. Wearables generally have a smaller form factor than a phone; thus, porting an app to the watch necessarily involves reworking the UI. An open problem is identifying best practices for adapting UIs to wearable devices. This paper contributes a study and data set of the state of practice in UI adaptation for wearables. We automatically extract UI designs from a set of 101 popular Android apps that have both a phone and watch version, and manually label how each UI element, as well as how screens in the app, are translated from the phone to the wearable. The paper identifies trends in adaptation strategies and presents design guidelines. We expect that the UI adaptation strategies identified in this paper can have wide-ranging impacts for future research and identifying best practices in this space, such as grounding future user studies that evaluate which strategies improve user satisfaction or automatically adapting UIs.more » « less
-
Fog computing has been advocated as an enabling technology for computationally intensive services in connected smart vehicles. Most existing works focus on analyzing and opti- mizing the queueing and workload processing latencies, ignoring the fact that the access latency between vehicles and fog/cloud servers can sometimes dominate the end-to-end service latency. This motivates the work in this paper, where we report a five- month urban measurement study of the wireless access latency between a connected vehicle and a fog computing system sup- ported by commercially available multi-operator LTE networks. We propose AdaptiveFog, a novel framework for autonomous and dynamic switching between different LTE operators that implement fog/cloud infrastructure. The main objective here is to maximize the service confidence level, defined as the probability that the tolerable latency threshold for each supported type of service can be guaranteed. AdaptiveFog has been implemented on a smart phone app, running on a moving vehicle. The app periodically measures the round-trip time between the vehicle and fog/cloud servers. An empirical spatial statistic model is established to characterize the spatial variation of the latency across the main driving routes of the city. To quantify the perfor- mance difference between different LTE networks, we introduce the weighted Kantorovich-Rubinstein (K-R) distance. An optimal policy is derived for the vehicle to dynamically switch between LTE operators’ networks while driving. Extensive analysis and simulation are performed based on our latency measurement dataset. Our results show that AdaptiveFog achieves around 30% and 50% improvement in the confidence level of fog and cloud latency, respectively.more » « less
An official website of the United States government
