skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial Privacy Pricing: The Interplay between Privacy, Utility and Price in Geo-Marketplaces
A geo-marketplace allows users to be paid for their location data. Users concerned about privacy may want to charge more for data that pinpoints their location accurately, but may charge less for data that is more vague. A buyer would prefer to minimize data costs, but may have to spend more to get the necessary level of accuracy. We call this interplay between privacy, utility, and price spatial privacy pricing. We formalize the issues mathematically with an example problem of a buyer deciding whether or not to open a restaurant by purchasing location data to determine if the potential number of customers is sufficient to open. The problem is expressed as a sequential decision making problem, where the buyer first makes a series of decisions about which data to buy and concludes with a decision about opening the restaurant or not. We present two algorithms to solve this problem, including experiments that show they perform better than baselines.  more » « less
Award ID(s):
1910950
PAR ID:
10192046
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SIGSPATIAL '20: Proceedings of the 28th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores how individuals' privacy-related decision-making processes may be influenced by their pre-existing relationships to companies in a wider social and economic context. Through an online role-playing exercise, we explore attitudes to a range of services including home automation, Internet-of-Things and financial services. We find that individuals do not only consider the privacy-related attributes of applications, devices or services in the abstract. Rather, their decisions are heavily influenced by their pre-existing perceptions of, and relationships with, the companies behind such apps, devices and services. In particular, perceptions about a company's size, level of regulatory scrutiny, relationships with third parties, and pre-existing data exposure lead some users to choose an option which might otherwise appear worse from a privacy perspective. This finding suggests a need for tools that support users to incorporate these existing perceptions and relationships into their privacy-related decision making. 
    more » « less
  2. Abstract: Health data is considered to be sensitive and personal; both governments and software platforms have enacted specific measures to protect it. Consumer apps that collect health data are becoming more popular, but raise new privacy concerns as they collect unnecessary data, share it with third parties, and track users. However, developers of these apps are not necessarily knowingly endangering users’ privacy; some may simply face challenges working with health features. To scope these challenges, we qualitatively analyzed 269 privacy-related posts on Stack Overflow by developers of health apps for Android- and iOS-based systems. We found that health-specific access control structures (e.g., enhanced requirements for permissions and authentication) underlie several privacy-related challenges developers face. The specific nature of problems often differed between the platforms, for example additional verification steps for Android developers, or confusing feedback about incorrectly formulated permission scopes for iOS. Developers also face problems introduced by third-party libraries. Official documentation plays a key part in understanding privacy requirements, but in some cases, may itself cause confusion. We discuss implications of our findings and propose ways to improve developers’ experience of working with health-related features -- and consequently to improve the privacy of their apps’ end users. 
    more » « less
  3. We consider the problem of population density estimation based on location data crowdsourced from mobile devices, using kernel density estimation (KDE). In a conventional, centralized setting, KDE requires mobile users to upload their location data to a server, thus raising privacy concerns. Here, we propose a Federated KDE framework for estimating the user population density, which not only keeps location data on the devices but also provides probabilistic privacy guarantees against a malicious server that tries to infer users' location. Our approach Federated random Fourier feature (RFF) KDE leverages a random feature representation of the KDE solution, in which each user's information is irreversibly projected onto a small number of spatially delocalized basis functions, making precise localization impossible while still allowing population density estimation. We evaluate our method on both synthetic and real-world datasets, and we show that it achieves a better utility (estimation performance)-vs-privacy (distance between inferred and true locations) tradeoff, compared to state-of-the-art baselines (e.g., GeoInd). We also vary the number of basis functions per user, to further improve the privacy-utility trade-off, and we provide analytical bounds on localization as a function of areal unit size and kernel bandwidth. 
    more » « less
  4. Data sets and statistics about groups of individuals are increasingly collected and released, feeding many optimization and learning algorithms. In many cases, the released data contain sensitive information whose privacy is strictly regulated. For example, in the U.S., the census data is regulated under Title 13, which requires that no individual be identified from any data released by the Census Bureau. In Europe, data release is regulated according to the General Data Protection Regulation, which addresses the control and transfer of personal data. Differential privacy has emerged as the de-facto standard to protect data privacy. In a nutshell, differentially private algorithms protect an individual’s data by injecting random noise into the output of a computation that involves such data. While this process ensures privacy, it also impacts the quality of data analysis, and, when private data sets are used as inputs to complex machine learning or optimization tasks, they may produce results that are fundamentally different from those obtained on the original data and even rise unintended bias and fairness concerns. In this talk, I will first focus on the challenge of releasing privacy-preserving data sets for complex data analysis tasks. I will introduce the notion of Constrained-based Differential Privacy (C-DP), which allows casting the data release problem to an optimization problem whose goal is to preserve the salient features of the original data. I will review several applications of C-DP in the context of very large hierarchical census data, data streams, energy systems, and in the design of federated data-sharing protocols. Next, I will discuss how errors induced by differential privacy algorithms may propagate within a decision problem causing biases and fairness issues. This is particularly important as privacy-preserving data is often used for critical decision processes, including the allocation of funds and benefits to states and jurisdictions, which ideally should be fair and unbiased. Finally, I will conclude with a roadmap to future work and some open questions. 
    more » « less
  5. People who are blind share their images and videos with companies that provide visual assistance technologies (VATs) to gain access to information about their surroundings. A challenge is that people who are blind cannot independently validate the content of the images and videos before they share them, and their visual data commonly contains private content. We examine privacy concerns for blind people who share personal visual data with VAT companies that provide descriptions authored by humans or artifcial intelligence (AI) . We frst interviewed 18 people who are blind about their perceptions of privacy when using both types of VATs. Then we asked the participants to rate 21 types of image content according to their level of privacy concern if the information was shared knowingly versus unknowingly with human- or AI-powered VATs. Finally, we analyzed what information VAT companies communicate to users about their collection and processing of users’ personal visual data through their privacy policies. Our fndings have implications for the development of VATs that safeguard blind users’ visual privacy, and our methods may be useful for other camera-based technology companies and their users. 
    more » « less