skip to main content


Title: PSGL-1 restricts HIV-1 infectivity by blocking virus particle attachment to target cells
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is expressed primarily on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits HIV-1 replication, the mechanism of PSGL-1–mediated anti-HIV activity remains to be elucidated. Here we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein or vesicular stomatitis virus G glycoprotein or even lacking a viral glycoprotein is impaired by PSGL-1. Mapping studies show that the extracellular N-terminal domain of PSGL-1 is necessary for its anti–HIV-1 activity, and that the PSGL-1 cytoplasmic tail contributes to inhibition. In addition, we demonstrate that the PSGL-1–related monomeric E-selectin–binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or expression of either Vpu or Nef, down-regulates PSGL-1 from the cell surface; expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1–mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses, such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a unique mechanism of action.  more » « less
Award ID(s):
1662096
NSF-PAR ID:
10192122
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
17
ISSN:
0027-8424
Page Range / eLocation ID:
9537 to 9545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a ‘molecular tweezer’ specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion–amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses.

     
    more » « less
  2. Mammalian orthoreoviruses (reoviruses) serve as potential triggers of celiac disease and have oncolytic properties, making these viruses potential cancer therapeutics. Primary attachment of reovirus to host cells is mainly mediated by the trimeric viral protein, σ1, which engages cell-surface glycans, followed by high-affinity binding to junctional adhesion molecule-A (JAM-A). This multistep process is thought to be accompanied by major conformational changes in σ1, but direct evidence is lacking. By combining biophysical, molecular, and simulation approaches, we define how viral capsid protein mechanics influence virus-binding capacity and infectivity. Single-virus force spectroscopy experiments corroborated by in silico simulations show that GM2 increases the affinity of σ1 for JAM-A by providing a more stable contact interface. We demonstrate that conformational changes in σ1 that lead to an extended rigid conformation also significantly increase avidity for JAM-A. Although its associated lower flexibility impairs multivalent cell attachment, our findings suggest that diminished σ1 flexibility enhances infectivity, indicating that fine-tuning of σ1 conformational changes is required to successfully initiate infection. Understanding properties underlying the nanomechanics of viral attachment proteins offers perspectives in the development of antiviral drugs and improved oncolytic vectors.

     
    more » « less
  3. Abstract

    SAMHD1 possesses multiple functions, but whether cellular factors regulateSAMHD1 expression or its function remains not well characterized. Here, by investigating why culturedRDandHEK293T cells show different sensitivity to enterovirus 71 (EV71) infection, we demonstrate thatSAMHD1 is a restriction factor for EV71. Importantly, we identifyTRIM21, an E3 ubiquitin ligase, as a key regulator ofSAMHD1, which specifically interacts and degradesSAMHD1 through the proteasomal pathway. However,TRIM21 has no effect on EV71 replication itself. Moreover, we prove that interferon production stimulated by EV71 infection induces increasedTRIM21 andSAMHD1 expression, whereas increasingTRIM21 overridesSAMHD1 inhibition of EV71 in cells and in a neonatal mouse model.TRIM21‐mediated degradation ofSAMHD1 also affectsSAMHD1‐dependent restriction ofHIV‐1 and the regulation of interferon production. We further identify the functional domains inTRIM21 required forSAMHD1 binding and the ubiquitination site K622 inSAMHD1 and show that phosphorylation ofSAMHD1 at T592 also blocks EV71 restriction. Our findings illuminate how EV71 overcomesSAMHD1 inhibition via the upregulation ofTRIM21.

     
    more » « less
  4. null (Ed.)
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease that began in 2019 (COVID-19), has been responsible for 1.4 million deaths worldwide as of 13 November 2020. Because at the time of writing no vaccine is yet available, a rapid diagnostic assay is very urgently needed. Herein, we present the development of anti-spike antibody attached gold nanoparticles for the rapid diagnosis of specific COVID-19 viral antigen or virus via a simple colorimetric change observation within a 5 minute time period. For rapid and highly sensitive identification, surface enhanced Raman spectroscopy (SERS) was employed using 4-aminothiophenol as a reporter molecule, which is attached to the gold nanoparticle via an Au–S bond. In the presence of COVID-19 antigen or virus particles, owing to the antigen–antibody interaction, the gold nanoparticles undergo aggregation, changing color from pink to blue, which allows for the determination of the presence of antigen or virus very rapidly by the naked eye, even at concentrations of 1 nanogram (ng) per mL for COVID-19 antigen and 1000 virus particles per mL for SARS-CoV-2 spike protein pseudotyped baculovirus. Importantly, the aggregated gold nanoparticles form “hot spots” to provide very strong SERS signal enhancement from anti-spike antibody and 4-aminothiophenol attached gold nanoparticles via light–matter interactions. Finite-difference time-domain (FDTD) simulation data indicate a 4-orders-of-magnitude Raman enhancement in “hot spot” positions when gold nanoparticles form aggregates. Using a portable Raman analyzer, our reported data demonstrate that our antibody and 4-aminothiophenol attached gold nanoparticle-based SERS probe has the capability to detect COVID-19 antigen even at a concentration of 4 picograms (pg) per mL and virus at a concentration of 18 virus particles per mL within a 5 minute time period. Using HEK293T cells, which express angiotensin-converting enzyme 2 (ACE2), by which SARS-CoV-2 enters human cells, we show that anti-spike antibody attached gold nanoparticles have the capability to inhibit infection by the virus. Our reported data show that antibody attached gold nanoparticles bind to SARS-CoV-2 spike protein, thereby inhibiting the virus from binding to cell receptors, which stops virus infection and spread. It also has the capability to destroy the lipid membrane of the virus. 
    more » « less
  5. Summary

    To defend against pathogens, plants have developed a complex immune system, which recognizes the pathogen effectors and mounts defence responses. In this study, the p33 protein ofCitrus tristeza virus(CTV), a viral membrane‐associated effector, was used as a molecular bait to explore virus interactions with host immunity. We discovered thatCitrus macrophyllamiraculin‐like protein 2 (CmMLP2), a member of the soybean Kunitz‐type trypsin inhibitor family, targets the viral p33 protein. The expression ofCmMLP2was up‐regulated by p33 in the citrus phloem‐associated cells. Knock‐down of theMLP2expression in citrus plants resulted in a higher virus accumulation, while the overexpression ofCmMLP2reduced the infectivity of CTV in the plant hosts. Further investigation revealed that, on the one hand, binding of CmMLP2 interrupts the cellular distribution of p33 whose proper function is necessary for the effective virus movement throughout the host. On the other hand, the ability of CmMLP2 to reorganize the endomembrane system, amalgamating the endoplasmic reticulum and the Golgi apparatus, induces cellular stress and accumulation of the reactive oxygen species, which inhibits the replication of CTV. Altogether, our data suggest that CmMLP2 employs a two‐way strategy in defence against CTV infection.

     
    more » « less