skip to main content


Title: Towards Understanding Gender Bias in Relation Extraction
Recent developments in Neural Relation Extraction (NRE) have made significant strides towards Automated Knowledge Base Construction. While much attention has been dedicated towards improvements in accuracy, there have been no attempts in the literature to evaluate social biases exhibited in NRE systems. In this paper, we create WikiGenderBias, a distantly supervised dataset composed of over 45,000 sentences including a 10% human annotated test set for the purpose of analyzing gender bias in relation extraction systems. We find that when extracting spouse-of and hypernym (i.e., occupation) relations, an NRE system performs differently when the gender of the target entity is different. However, such disparity does not appear when extracting relations such as birthDate or birthPlace. We also analyze how existing bias mitigation techniques, such as name anonymization, word embedding debiasing, and data augmentation affect the NRE system in terms of maintaining the test performance and reducing biases. Unfortunately, due to NRE models rely heavily on surface level cues, we find that existing bias mitigation approaches have a negative effect on NRE. Our analysis lays groundwork for future quantifying and mitigating bias in NRE.  more » « less
Award ID(s):
1927554
NSF-PAR ID:
10192194
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Page Range / eLocation ID:
2943 to 2953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent developments in Neural Relation Extraction (NRE) have made significant strides towards Automated Knowledge Base Construction (AKBC). While much attention has been dedicated towards improvements in accuracy, there have been no attempts in the literature to our knowledge to evaluate social biases in NRE systems. We create WikiGenderBias, a distantly supervised dataset with a human annotated test set. WikiGenderBias has sentences specifically curated to analyze gender bias in relation extraction systems. We use WikiGenderBias to evaluate systems for bias and find that NRE systems exhibit gender biased predictions and lay groundwork for future evaluation of bias in NRE. We also analyze how name anonymization, hard debiasing for word embeddings, and counterfactual data augmentation affect gender bias in predictions and performance. 
    more » « less
  2. Knowledge graphs (KGs) are of great importance in various artificial intelligence systems, such as question answering, relation extraction, and recommendation. Nevertheless, most real-world KGs are highly incomplete, with many missing relations between entities. To discover new triples (i.e., head entity, relation, tail entity), many KG completion algorithms have been proposed in recent years. However, a vast majority of existing studies often require a large number of training triples for each relation, which contradicts the fact that the frequency distribution of relations in KGs often follows a long tail distribution, meaning a majority of relations have only very few triples. Meanwhile, since most existing large-scale KGs are constructed automatically by extracting information from crowd-sourcing data using heuristic algorithms, plenty of errors could be inevitably incorporated due to the lack of human verification, which greatly reduces the performance for KG completion. To tackle the aforementioned issues, in this paper, we study a novel problem of error-aware few-shot KG completion and present a principled KG completion framework REFORM. Specifically, we formulate the problem under the few-shot learning framework, and our goal is to accumulate meta-knowledge across different meta-tasks and generalize the accumulated knowledge to the meta-test task for error-aware few-shot KG completion. To address the associated challenges resulting from insufficient training samples and inevitable errors, we propose three essential modules neighbor encoder, cross-relation aggregation, and error mitigation in each meta-task. Extensive experiments on three widely used KG datasets demonstrate the superiority of the proposed framework REFORM over competitive baseline methods. 
    more » « less
  3. While EXplainable Artificial Intelligence (XAI) approaches aim to improve human-AI collaborative decision-making by improving model transparency and mental model formations, experiential factors associated with human users can cause challenges in ways system designers do not anticipate. In this paper, we first showcase a user study on how anchoring bias can potentially affect mental model formations when users initially interact with an intelligent system and the role of explanations in addressing this bias. Using a video activity recognition tool in cooking domain, we asked participants to verify whether a set of kitchen policies are being followed, with each policy focusing on a weakness or a strength. We controlled the order of the policies and the presence of explanations to test our hypotheses. Our main finding shows that those who observed system strengths early-on were more prone to automation bias and made significantly more errors due to positive first impressions of the system, while they built a more accurate mental model of the system competencies. On the other hand, those who encountered weaknesses earlier made significantly fewer errors since they tended to rely more on themselves, while they also underestimated model competencies due to having a more negative first impression of the model. Motivated by these findings and similar existing work, we formalize and present a conceptual model of user’s past experiences that examine the relations between user’s backgrounds, experiences, and human factors in XAI systems based on usage time. Our work presents strong findings and implications, aiming to raise the awareness of AI designers towards biases associated with user impressions and backgrounds. 
    more » « less
  4. Deep neural networks (DNNs) are increasingly used in real-world applications (e.g. facial recognition). This has resulted in concerns about the fairness of decisions made by these models. Various notions and measures of fairness have been proposed to ensure that a decision-making system does not disproportionately harm (or benefit) particular subgroups of the population. In this paper, we argue that traditional notions of fairness that are only based on models' outputs are not sufficient when the model is vulnerable to adversarial attacks. We argue that in some cases, it may be easier for an attacker to target a particular subgroup, resulting in a form of robustness bias. We show that measuring robustness bias is a challenging task for DNNs and propose two methods to measure this form of bias. We then conduct an empirical study on state-of-the-art neural networks on commonly used real-world datasets such as CIFAR-10, CIFAR-100, Adience, and UTKFace and show that in almost all cases there are subgroups (in some cases based on sensitive attributes like race, gender, etc) which are less robust and are thus at a disadvantage. We argue that this kind of bias arises due to both the data distribution and the highly complex nature of the learned decision boundary in the case of DNNs, thus making mitigation of such biases a non-trivial task. Our results show that robustness bias is an important criterion to consider while auditing real-world systems that rely on DNNs for decision making. Code to reproduce all our results can be found here: https://github.com/nvedant07/Fairness-Through-Robustness 
    more » « less
  5. null (Ed.)
    Mixed-initiative visual analytics systems incorporate well-established design principles that improve users' abilities to solve problems. As these systems consider whether to take initiative towards achieving user goals, many current systems address the potential for cognitive bias in human initiatives statically, relying on fixed initiatives they can take instead of identifying, communicating and addressing the bias as it occurs. We argue that mixed-initiative design principles can and should incorporate cognitive bias mitigation strategies directly through development of mitigation techniques embedded in the system to address cognitive biases in situ. We identify domain experts in machine learning adopting visual analytics techniques and systems that incorporate existing mixed-initiative principles and examine their potential to support bias mitigation strategies. This examination considers the unique perspective these experts bring to visual analytics and is situated in existing user-centered systems that make exemplary use of design principles informed by cognitive theory. We then suggest informed opportunities for domain experts to take initiative toward addressing cognitive biases in light of their existing contributions to the field. Finally, we contribute open questions and research directions for designers seeking to adopt visual analytics techniques that incorporate bias-aware initiatives in future systems. 
    more » « less