skip to main content


Search for: All records

Award ID contains: 1663747

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Puyol Anton, E ; Pop, M ; Sermesant, M ; Campello, V ; Lalande, A ; Lekadir, K ; Suinesiaputra, A ; Camara, O ; Young, A (Ed.)
    Cardiac cine magnetic resonance imaging (CMRI) is the reference standard for assessing cardiac structure as well as function. However, CMRI data presents large variations among different centers, vendors, and patients with various cardiovascular diseases. Since typical deep-learning-based segmentation methods are usually trained using a limited number of ground truth annotations, they may not generalize well to unseen MR images, due to the variations between the training and testing data. In this study, we proposed an approach towards building a generalizable deep-learning-based model for cardiac structure segmentations from multi-vendor,multi-center and multi-diseases CMRI data. We used a novel combination of image augmentation and a consistency loss function to improve model robustness to typical variations in CMRI data. The proposed image augmentation strategy leverages un-labeled data by a) using CycleGAN to generate images in different styles and b) exchanging the low-frequency features of images from different vendors. Our model architecture was based on an attention-gated U-Net model that learns to focus on cardiac structures of varying shapes and sizes while suppressing irrelevant regions. The proposed augmentation and consistency training method demonstrated improved performance on CMRI images from new vendors and centers. When evaluated using CMRI data from 4 vendors and 6 clinical center, our method was generally able to produce accurate segmentations of cardiac structures. 
    more » « less
  4. null (Ed.)
  5. Abstract Computational fluid dynamics (CFD) modeling of left ventricle (LV) flow combined with patient medical imaging data has shown great potential in obtaining patient-specific hemodynamics information for functional assessment of the heart. A typical model construction pipeline usually starts with segmentation of the LV by manual delineation followed by mesh generation and registration techniques using separate software tools. However, such approaches usually require significant time and human efforts in the model generation process, limiting large-scale analysis. In this study, we propose an approach toward fully automating the model generation process for CFD simulation of LV flow to significantly reduce LV CFD model generation time. Our modeling framework leverages a novel combination of techniques including deep-learning based segmentation, geometry processing, and image registration to reliably reconstruct CFD-suitable LV models with little-to-no user intervention.1 We utilized an ensemble of two-dimensional (2D) convolutional neural networks (CNNs) for automatic segmentation of cardiac structures from three-dimensional (3D) patient images and our segmentation approach outperformed recent state-of-the-art segmentation techniques when evaluated on benchmark data containing both magnetic resonance (MR) and computed tomography(CT) cardiac scans. We demonstrate that through a combination of segmentation and geometry processing, we were able to robustly create CFD-suitable LV meshes from segmentations for 78 out of 80 test cases. Although the focus on this study is on image-to-mesh generation, we demonstrate the feasibility of this framework in supporting LV hemodynamics modeling by performing CFD simulations from two representative time-resolved patient-specific image datasets. 
    more » « less