This study explores the influence of Auditory Rhythmic Asymmetric Cueing (A-RAC), Tactile Rhythmic Asymmetric Cueing (T-RAC), and their combination (AT) on key kinetic gait parameters in gait rehabilitation: Vertical Ground Reaction Force Asymmetry (GRF), Push-off Force Asymmetry (POF), and Braking Force Asymmetry (BRK). Utilizing the Computer-Assisted Rehabilitation Environment (CAREN) with 18 participants, this research examines these interventions' effectiveness in generating asymmetric gait. While the results during adaptation indicate that BRK was significantly affected by both A-RAC (p = 0.001) and AT (p = 0.003), only A-RAC had a significant effect on GRF (p = 0.002) during adaptation. None of the interventions significantly altered POF, suggesting its resistance to sensory cue modification. These findings provide valuable insights for enhancing gait rehabilitation strategies, particularly in addressing vertical load
more »
« less
Human Gait Analysis Metric for Gait Retraining
The combined gait asymmetry metric (CGAM) provides a method to synthesize human gait motion. The metric is weighted to balance each parameter’s effect by normalizing the data so all parameters are more equally weighted. It is designed to combine spatial, temporal, kinematic, and kinetic gait parameter asymmetries. It can also combine subsets of the different gait parameters to provide a more thorough analysis. The single number quantifying gait could assist robotic rehabilitation methods to optimize the resulting gait patterns. CGAM will help define quantitative thresholds for achievable balanced overall gait asymmetry. The study presented here compares the combined gait parameters with clinical measures such as timed up and go (TUG), six-minute walk test (6MWT), and gait velocity. The comparisons are made on gait data collected on individuals with stroke before and after twelve sessions of rehabilitation. Step length, step time, and swing time showed a strong correlation to CGAM, but the double limb support asymmetry has nearly no correlation with CGAM and ground reaction force asymmetry has a weak correlation. The CGAM scores were moderately correlated with TUG and strongly correlated to 6MWT and gait velocity.
more »
« less
- Award ID(s):
- 1910434
- PAR ID:
- 10192215
- Date Published:
- Journal Name:
- Applied Bionics and Biomechanics
- Volume:
- 2019
- ISSN:
- 1176-2322
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantitative analysis of human gait is critical for the early discovery, progressive tracking, and rehabilitation of neurological and musculoskeletal disorders, such as Parkinson’s disease, stroke, and cerebral palsy. Gait analysis typically involves estimating gait characteristics, such as spatiotemporal gait parameters and gait health indicators (e.g., step time, length, symmetry, and balance). Traditional methods of gait analysis involve the use of cameras, wearables, and force plates but are limited in operational requirements when applied in daily life, such as direct line-of-sight, carrying devices, and dense deployment. This paper introduces a novel approach for gait analysis by passively sensing floor vibrations generated by human footsteps using vibration sensors mounted on the floor surface. Our approach is low-cost, non-intrusive, and perceived as privacy-friendly, making it suitable for continuous gait health monitoring in daily life. Our algorithm estimates various gait parameters that are used as standard metrics in medical practices, including temporal parameters (step time, stride time, stance time, swing time, double-support time, and single-support time), spatial parameters (step length, width, angle, and stride length), and extracts gait health indicators (cadence/walking speed, left–right symmetry, gait balance, and initial contact types). The main challenge we addressed in this paper is the effect of different floor types on the resultant vibrations. We develop floor-adaptive algorithms to extract features that are generalizable to various practical settings, including homes, hospitals, and eldercare facilities. We evaluate our approach through real-world walking experiments with 20 adults with 12,231 labeled gait cycles across concrete and wooden floors. Our results show 90.5% (RMSE 0.08s), 71.3% (RMSE 0.38m), and 92.3% (RMSPE 7.7%) accuracy in estimating temporal, spatial parameters, and gait health indicators, respectively.more » « less
-
Movement disorders, such as Parkinson’s disease, affect more than 10 million people worldwide. Gait analysis is a critical step in the diagnosis and rehabilitation of these disorders. Specifically, step and stride lengths provide valuable insights into the gait quality and rehabilitation process. However, traditional approaches for estimating step length are not suitable for continuous daily monitoring since they rely on special mats and clinical environments. To address this limitation, this article presents a novel and practical step-length estimation technique using low-power wearable bend and inertial sensors. Experimental results show that the proposed model estimates step length with 5.49% mean absolute percentage error and provides accurate real-time feedback to the user.more » « less
-
Abstract Introduction Split-belt treadmill training has been used to assist with gait rehabilitation following stroke. This method modifies a patient’s step length asymmetry by adjusting left and right tread speeds individually during training. However, current split-belt training approaches pay little attention to the individuality of patients by applying set tread speed ratios (e.g., 2:1 or 3:1). This generalization results in unpredictable step length adjustments between the legs. To customize the training, this study explores the capabilities of a live feedback system that modulates split-belt tread speeds based on real-time step length asymmetry. Materials and methods Fourteen healthy individuals participated in two 1.5-h gait training sessions scheduled 1 week apart. They were asked to walk on the Computer Assisted Rehabilitation Environment (CAREN) split-belt treadmill system with a boot on one foot to impose asymmetrical gait patterns. Each training session consisted of a 3-min baseline, 10-min baseline with boot, 10-min feedback with boot (6% asymmetry exaggeration in the first session and personalized in the second), 5-min post feedback with boot, and 3-min post feedback without boot. A proportional-integral (PI) controller was used to maintain a specified step-length asymmetry by changing the tread speed ratios during the 10-min feedback period. After the first session, a linear model between baseline asymmetry exaggeration and post-intervention asymmetry improvement was utilized to develop a relationship between target exaggeration and target post-intervention asymmetry. In the second session, this model predicted a necessary target asymmetry exaggeration to replace the original 6%. This prediction was intended to result in a highly symmetric post-intervention step length. Results and discussion Eleven out of 14 participants (78.6%) developed a successful relationship between asymmetry exaggeration and decreased asymmetry in the post-intervention period of the first session. Seven out of the 11 participants (63.6%) in this successful correlation group had second session post-intervention asymmetries of < 3.5%. Conclusions The use of a PI controller to modulate split-belt tread speeds demonstrated itself to be a viable method for individualizing split-belt treadmill training.more » « less
-
This study categorizes the response to asymmetric rhythmic cues into distinct levels of adaptation using changes in their step velocity. Motion capture and force data were collected from healthy individuals undergoing split-belt treadmill and rhythmic cueing interventions. This allowed comparative insights into two distinct adaptation mechanisms (sensorimotor and instructional adaptation) corresponding to the interventions and integration of those findings with trade-off mechanisms within spatiotemporal and kinetic gait parameters. Interlimb gait harmony (corresponding to differences between left and right step velocities) was significantly different between the gait interventions, indicating underlying differences in the dominant adaptation mechanisms driving them. The trade-off mechanisms among step length, swing time, and push-off forces were significantly different (i) between the gait interventions and (ii) between adaptable and non-adaptable subject groups to external rhythmic cues. This suggests that an orthogonal linear relationship between propulsion and either spatial or temporal features may indicate the adaptation mechanism that has a greater contribution towards their motor outcome.more » « less
An official website of the United States government

