Abstract The wind shear stress at the ocean surface drives momentum exchange across the air-sea interface regulating atmospheric and oceanic phenomena. Theoretically, the mean wind stress acts in a reference frame moving with the ocean surface; however, the relative motion between the air and ocean surface layers is conventionally neglected in bulk transfer formulae. Recent developments improving air-sea momentum flux quantification advocate for explicitly defining the air-sea relative wind, especially in the regime of low wind forcing, where surface currents may approach a significant fraction of the total wind speed. Yet, in practice, this new approach is typically applied using opportunistic definitions of the near-surface current. Here, we build on this recent work and propose a general framework for the bulk air-sea momentum flux that directly accounts for vertical current shear and surface waves in quantifying the stress at the interface. Our approach partitions the stress at the interface into viscous skin and (wave) form drag components, each applied to their relevant surface advections, which are quantified using the inertial motions within the sub-surface log layer and the modulation of waves by currents predicted by linear theory, respectively. The efficacy of this approach is demonstrated using an extensive oceanic dataset from the Coastal Endurance Array (Ocean Observatories Initiative) offshore of Newport, Oregon (2017–2023) that includes co-located measurements of direct covariance wind stress, directional wave spectra, and current profiles. As expected, our framework does not alter the overall dependence of momentum flux on mean wind forcing, and we found the largest impacts at relatively low wind speeds. Below 3 m s$$^{-1}$$, accounting for sub-surface shear reduced form drag variation by 40–50% as compared to a current-agnostic approach; as compared to a shear-free current, i.e., slab ocean, a 35% reduction in form drag variation was found. At this wind forcing, neglecting the currents led to systematically overestimating the form stress by 20 to 50%—an effect that could not be captured by using the slab ocean approach. This framework builds on the existing understanding of wind-wave-current interaction, yielding a novel formulation that explicitly accounts for the role of current shear and surface waves in air-sea momentum flux. This work holds significant implications for air-sea coupled modeling in general conditions.
more »
« less
Coastally Generated Near-Inertial Waves
Wind directly forces inertial oscillations in the mixed layer. Where these currents hit the coast, the no-normal-flow boundary condition leads to vertical velocities that pump both the base of the mixed layer and the free surface, producing offshore-propagating near-inertial internal and surface waves, respectively. The internal waves directly transport wind work downward into the ocean’s stratified interior, where it may provide mechanical mixing. The surface waves propagate offshore where they can scatter over rough topography in a process analogous to internal-tide generation. Here, we estimate mixed layer currents from observed winds using a damped slab model. Then, we estimate the pressure, velocity, and energy flux associated with coastally generated near-inertial waves at a vertical coastline. These results are extended to coasts with arbitrary across-shore topography and examined using numerical simulations. At the New Jersey shelfbreak, comparisons between the slab model, numerical simulations, and moored observations are ambiguous. Extrapolation of the theoretical results suggests that [Formula: see text](10%) of global wind work (i.e., 0.03 of 0.31 TW) is transferred to coastally generated barotropic near-inertial waves.
more »
« less
- Award ID(s):
- 1635560
- PAR ID:
- 10192257
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 49
- Issue:
- 11
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 2979 to 2995
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A series of idealized numerical simulations is used to examine the generation of mode-one superinertial coastally trapped waves (CTWs). In the first set of simulations, CTWs are resonantly generated when freely propagating mode-one internal tides are incident on the coast such that the angle of incidence of the internal wave causes the projected wavenumber of the tide on the coast to satisfy a triad relationship with the wavenumbers of the bathymetry and the CTW. In the second set of simulations, CTWs are generated by the interaction of the barotropic tide with topography that has the same scales as the CTW. Under resonant conditions, superinertial coastally trapped waves are a leading order coastal process, with alongshore current magnitudes that can be larger than the barotropic or internal tides from which they are generated.more » « less
-
Abstract A set of realistic coastal simulations in California allows for the exploration of surface gravity wave effects on currents (WEC) in an active submesoscale current regime. We use a new method that takes into account the full surface gravity wave spectrum and produces larger Stokes drift than the monochromatic peak-wave approximation. We investigate two high wave events lasting several days — one from a remotely generated swell and another associated with local wind-generated waves — and perform a systematic comparison between solutions with and without WEC at two submesoscale-resolving horizontal grid resolutions ( dx = 270 m and 100 m). WEC results in the enhancement of open-ocean surface density and velocity gradients when the averaged significant wave height H S is relatively large (> 4.2m). For smaller waves, WEC is a minor effect overall. For the remote swell (strong waves and weak winds), WEC maintains submesoscale structures and accentuates the cyclonic vorticity and horizontal convergence skewness of submesoscale fronts and filaments. The vertical enstrophy ζ 2 budget in cyclonic regions ( ζ/f > 2) reveals enhanced vertical shear and enstrophy production via vortex tilting and stretching. Wind-forced waves also enhance surface gradients, up to the point where they generate a small-submesoscale roll-cell pattern with high vorticity and divergence that extends vertically through the entire mixed layer. The emergence of these roll-cells results in a buoyancy gradient sink near the surface that causes a modest reduction in the typically large submesoscale density gradients.more » « less
-
Internal waves impinging on sloping topography can generate mixing through the formation of near-bottom bores and overturns in what has been called the “internal swash” zone. Here, we investigate the mixing generated during these breaking events and the subsequent ventilation of the bottom boundary layer across a realistic nondimensional parameter space for the ocean using three-dimensional large-eddy simulations. Waves overturn and break at two points during a wave period: when the downslope velocity is strongest and during the rapid onset of a dense, upslope bore. From the first overturning bore to the expulsion of fluid into the interior, there is a strong dependence on the effective wave height, a length scale defined by the ratio of wave velocity over the background buoyancy frequency, an upper bound on the vertical parcel displacement an internal wave can cause. While a similar energetically motivated vertical length scale is often seen in the context of lee-wave generation over topography, the results discussed here suggest this readily measurable parameter can be used to estimate the size of near-boundary overturns, the strength of the ensuing turbulent mixing, and the vertical scale of the along-isopycnal intrusions of fluid ejected from the boundary layer. Examining a volume budget of the near-boundary region highlights spatial and temporal variability that must be considered when determining the water mass transformation during this process.more » « less
-
In recent years, the global transition towards green energy, driven by environmental concerns and increasing electricity demands, has remarkably reshaped the energy landscape. The transformative potential of marine wind energy is particularly critical in securing a sustainable energy future. To achieve this objective, it is essential to have an accurate understanding of wind dynamics and their interactions with ocean waves for the proper design and operation of offshore wind turbines (OWTs). The accuracy of met-ocean models depends critically on their ability to correctly capture sea-surface drag over the multiscale ocean surface—a quantity typically not directly resolved in numerical models and challenging to acquire using either field or laboratory measurements. Although skin friction drag contributes considerably to the total wind stress, especially at moderate wind speeds, it is notoriously challenging to predict using physics-based approaches. The current work introduces a novel approach based on a convolutional neural network (CNN) model to predict the spatial distributions of skin friction drag over wind-generated surface waves using wave profiles, local wave slopes, local wave phases, and the scaled wind speed. The CNN model is trained using a set of high-resolution laboratory measurements of air-side velocity fields and their respective surface viscous stresses obtained over a range of wind-wave conditions. The results demonstrate the capability of our model to accurately estimate both the instantaneous and area-aggregate viscous stresses for unseen wind-wave regimes. The proposed CNN-based wall-layer model offers a viable pathway for estimating the local and averaged skin friction drag in met-ocean simulations.more » « less
An official website of the United States government

