skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Physics-Based Device Models and Progress Review for Active Piezoelectric Semiconductor Devices
Piezoelectric devices transduce mechanical energy to electrical energy by elastic deformation, which distorts local dipoles in crystalline materials. Amongst electromechanical sensors, piezoelectric devices are advantageous because of their scalability, light weight, low power consumption, and readily built-in amplification and ability for multiplexing, which are essential for wearables, medical devices, and robotics. This paper reviews recent progress in active piezoelectric devices. We classify these piezoelectric devices according to the material dimensionality and present physics-based device models to describe and quantify the piezoelectric response for one-dimensional nanowires, emerging two-dimensional materials, and three-dimensional thin films. Different transduction mechanisms and state-of-the-art devices for each type of material are reviewed. Perspectives on the future applications of active piezoelectric devices are discussed.  more » « less
Award ID(s):
1728497
PAR ID:
10192277
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
14
ISSN:
1424-8220
Page Range / eLocation ID:
3872
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Piezoelectric materials show potential to harvest the ubiquitous, abundant, and renewable energy associated with mechanical vibrations. However, the best performing piezoelectric materials typically contain lead which is a carcinogen. Such lead-containing materials are hazardous and are being increasingly curtailed by environmental regulations. In this study, we report that the lead-free chalcogenide perovskite family of materials exhibits piezoelectricity. First-principles calculations indicate that even though these materials are centrosymmetric, they are readily polarizable when deformed. The reason for this is shown to be a loosely packed unit cell, containing a significant volume of vacant space. This allows for an extended displacement of the ions, enabling symmetry reduction, and resulting in an enhanced displacement-mediated dipole moment. Piezoresponse force microscopy performed on BaZrS3confirmed that the material is piezoelectric. Composites of BaZrS3particles dispersed in polycaprolactone were developed to harvest energy from human body motion for the purposes of powering electrochemical and electronic devices. 
    more » « less
  2. The development of magnetic logic devices dictates a need for a novel type of interconnect for magnetic signal transmission. Fast signal damping is one of the problems which drastically differs from conventional electric technology. Here, we describe a magnetic interconnect based on a composite multiferroic comprising piezoelectric and magnetostrictive materials. Internal signal amplification is the main reason for using multiferroic material, where a portion of energy can be transferred from electric to magnetic domains via stress-mediated coupling. The utilization of composite multiferroics consisting of piezoelectric and magnetostrictive materials offers flexibility for the separate adjustment of electric and magnetic characteristics. The structure of the proposed interconnect resembles a parallel plate capacitor filled with a piezoelectric, where one of the plates comprises a magnetoelastic material. An electric field applied across the plates of the capacitor produces stress, which, in turn, affects the magnetic properties of the magnetostrictive material. The charging of the capacitor from one edge results in the charge diffusion accompanied by the magnetization change in the magnetostrictive layer. This enables the amplitude of the magnetic signal to remain constant during the propagation. The operation of the proposed interconnects is illustrated by numerical modeling. The model is based on the Landau–Lifshitz–Gilbert equation with the electric field-dependent anisotropy term included. A variety of magnetic logic devices and architectures can benefit from the proposed interconnects, as they provide reliable and low-energy-consuming data transmission. According to the estimates, the group velocity of magnetic signals may be up to 105 m/s with energy dissipation less than 10−18 J per bit per 100 nm. The physical limits and practical challenges of the proposed approach are also discussed. 
    more » « less
  3. Additive manufacturing (AM) technology has recently seen increased utilization due to its versatility in using functional materials, offering a new pathway for next-generation conformal electronics in the smart sensor field. However, the limited availability of polymer-based ultraviolet (UV)-curable materials with enhanced piezoelectric properties necessitates the development of a tailorable process suitable for 3D printing. This paper investigates the structural, thermal, rheological, mechanical, and piezoelectric properties of a newly developed sensor resin material. The polymer resin is based on polyvinylidene fluoride (PVDF) as a matrix, mixed with constituents enabling UV curability, and boron nitride nanotubes (BNNTs) are added to form a nanocomposite resin. The results demonstrate the successful micro-scale printability of the developed polymer and nanocomposite resins using a liquid crystal display (LCD)-based 3D printer. Additionally, incorporating BNNTs into the polymer matrix enhanced the piezoelectric properties, with an increase in the voltage response by up to 50.13%. This work provides new insights for the development of 3D printable flexible sensor devices and energy harvesting systems. 
    more » « less
  4. Recent advances in precision manufacturing technology and a thorough understanding of the properties of piezoelectric materials have made it possible for researchers to develop innovative microrobotic systems, which draw more attention to the challenges of utilizing microrobots in areas that are inaccessible to ordinary robots. This review paper provides an overview of the recent advances in the application of piezoelectric materials in microrobots. The challenges of microrobots in the direction of autonomy are categorized into four sections: mechanisms, power, sensing, and control. In each section, innovative research ideas are presented to inspire researchers in their prospective microrobot designs according to specific applications. Novel mechanisms for the mobility of piezoelectric microrobots are reviewed and described. Additionally, as the piezoelectric micro-actuators require high-voltage electronics and onboard power supplies, we review ways of energy harvesting technology and lightweight micro-sensing mechanisms that contain piezoelectric devices to provide feedback, facilitating the use of control strategies to achieve the autonomous untethered movement of microrobots. 
    more » « less
  5. The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage. 
    more » « less