skip to main content

Title: A Methodology for Remote Sensing Inter-Turn Fault Events in Power System Air-Core Reactors, via Simulation of Magneto Quasi-Static Fields in 2D FDTD
We present a numerical methodology to estimate the transient fault currents and to simulate the remote sensing of transient fault information embedded in the magnetic field emissions caused by inter-turn shorts in 60 Hz air-core reactors, thru a magneto quasi-static (MQS) field approximation in the method of Finite-Difference Time-Domain (FDTD) in 2-dimensional (2D) space. The MQS 2D FDTD fields of reactor in normal operation are scaled by correlation against an equivalent circuit model that is derived from application of basic physics principles to parameters of the 3D air-core reactor. The proposed multi-scale quasi-static modeling methodology, based on the reduced c modification, provides fine-feature access down to the single-wire level and can efficiently estimate the transient fault fields and currents due to turn-to-turn short in a reactor with core height in several meters, core diameter in meters, wire diameter in millimeters, and number of turns in the thousands, at 60 Hz; this is accomplished by using computational resources of a typical laptop computer within seconds or minutes, as opposed to days that would be otherwise required without the reduced c modification.
Authors:
; ;
Award ID(s):
1816542
Publication Date:
NSF-PAR ID:
10192353
Journal Name:
IEEE Access
Page Range or eLocation-ID:
1 to 14
ISSN:
2169-3536
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  2. Abstract Many low-angle normal faults (dip ≤30°) accommodate tens of kilometers of crustal extension, but their mechanics remain contentious. Most models for low-angle normal fault slip assume vertical maximum principal stress σ1, leading many authors to conclude that low-angle normal faults are poorly oriented in the stress field (≥60° from σ1) and weak (low friction). In contrast, models for low-angle normal fault formation in isotropic rocks typically assume Coulomb failure and require inclined σ1 (no misorientation). Here, a data-based, mechanical-tectonic model is presented for formation of the Whipple detachment fault, southeastern California. The model honors local and regional geologic and tectonic history and laboratory friction measurements. The Whipple detachment fault formed progressively in the brittle-plastic transition by linking of “minidetachments,” which are small-scale analogs (meters to kilometers in length) in the upper footwall. Minidetachments followed mylonitic anisotropy along planes of maximum shear stress (45° from the maximum principal stress), not Coulomb fractures. They evolved from mylonitic flow to cataclasis and frictional slip at 300–400 °C and ∼9.5 km depth, while fluid pressure fell from lithostatic to hydrostatic levels. Minidetachment friction was presumably high (0.6–0.85), based upon formation of quartzofeldspathic cataclasite and pseudotachylyte. Similar mechanics are inferred for both the minidetachmentsmore »and the Whipple detachment fault, driven by high differential stress (∼150–160 MPa). A Mohr construction is presented with the fault dip as the main free parameter. Using “Byerlee friction” (0.6–0.85) on the minidetachments and the Whipple detachment fault, and internal friction (1.0–1.7) on newly formed Reidel shears, the initial fault dips are calculated at 16°–26°, with σ1 plunging ∼61°–71° northeast. Linked minidetachments probably were not well aligned, and slip on the evolving Whipple detachment fault probably contributed to fault smoothing, by off-fault fracturing and cataclasis, and to formation of the fault core and fractured damage zone. Stress rotation may have occurred only within the mylonitic shear zone, but asymmetric tectonic forces applied to the brittle crust probably caused gradual rotation of σ1 above it as a result of: (1) the upward force applied to the base of marginal North America by buoyant asthenosphere upwelling into an opening slab-free window and/or (2) basal, top-to-the-NE shear traction due to midcrustal mylonitic flow during tectonic exhumation of the Orocopia Schist. The mechanical-tectonic model probably applies directly to low-angle normal faults of the lower Colorado River extensional corridor, and aspects of the model (e.g., significance of anisotropy, stress rotation) likely apply to formation of other strong low-angle normal faults.« less
  3. Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and thenmore »formed into microdroplets by the continuous phase of water and surfactant (sodium dodecyl sulfate) introduced in a counter-flow configuration. Elastomeric microdroplets with a diameter ranging between 50 to 300 micron are produced at 25 to 250 Hz with a size polydispersity less than 3% in single stream production. The physicochemical properties of the elastomeric microparticles such as particle swelling/softness can be tuned using the ratio of cross-linker to polymer as well as the ratio of polymer mixture to solvent during the particle formation. Swelling in toluene can be tuned up to 400% of the initial particle volume by reducing the concentration of cross-linker in the mixture and increasing the ratio of polymer to solvent during production.5 After the particles are produced and collected, they are transferred into toluene containing palladium acetate, allowing the particles to incorporate the palladium into the polymer network and then reduce the palladium to Pd0 with the Si-H functionality present on the PHMS backbones. After the reduction, the Pd-loaded particles can be washed and dried for storage or switched into an ethanol/water solution for loading into a micro-packed bed reactor (µ-PBR) for continuous organic synthesis. The in-situ reduction of Pd within the PHMS microparticles was confirmed using energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and focused ion beam-SEM, and TEM techniques. In the next step, we used the developed µ-PBR to conduct continuous organic synthesis of 4-phenyltoluene by Suzuki-Miyaura cross-coupling of 4-iodotoluene and phenylboronic acid using potassium carbonate as the base. Catalyst leaching was determined to only occur at sub ppm concentrations even at high solvent flow rates after 24 h of continuous run using inductively coupled plasma mass spectrometry (ICP-MS). The developed µ-PBR using the elastomeric microparticles is an important initial step towards the development of highly-efficient and green continuous manufacturing technologies in the pharma industry. In addition, the developed elastomeric microparticle synthesis technique can be utilized for the development of a library of other chemically cross-linkable polymer/cross-linker pairs for applications in organic synthesis, targeted drug delivery, cell encapsulation, or biomedical imaging. References 1. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. 2. Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61 LP-67. 3. Jensen KF. Flow Chemistry — Microreaction Technology Comes of Age. 2017;63(3). 4. Stibingerova I, Voltrova S, Kocova S, Lindale M, Srogl J. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity. Org Lett. 2016;18(2):312-315. 5. Bennett JA, Kristof AJ, Vasudevan V, Genzer J, Srogl J, Abolhasani M. Microfluidic synthesis of elastomeric microparticles: A case study in catalysis of palladium-mediated cross-coupling. AIChE J. 2018;0(0):1-10.« less
  4. The historical record indicates the possibility of intense coronal mass ejections (CMEs). Energized particles and magnetic fields ejected by coronal mass ejections (CMEs) towards the Earth may disrupt the Earth’s magnetosphere and generate a geomagnetic storm. During a geomagnetic storm, the induced geoelectric field can drive geomagnetically-induced currents (GICs) that flow through ground-based conductors. These GICs have the potential to damage high voltage power transmission systems and cause blackouts. As part of the NSF-funded Comprehensive Hazard Analysis for Resilience to Geomagnetic Extreme Disturbances (CHARGED) project, a solar-wind-to-lithosphere numerical model of the geoelectric field is being developed. The purpose of this new tool is to drive a new generation of GIC forecasting. As a part of that work, Maxwell’s equations, finite-difference time-domain (FDTD) models of the last stage of the Sun-to-Earth propagation path is being coupled to output generated by the Block Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) magnetohydrodynamics model and the Ridley Ionosphere Model (RIM) of ionospheric dynamics. Specifically, three-dimensional (3-D) BATS-R-US and RIM-predicted ionospheric currents occurring in the lower ionosphere during and around the time of the March 17, 2015 storm are modeled in 3-D FDTD models of North America. These models start at a depth of 150more »km, and they account for ionospheric currents occurring up to an altitude of 115 km. The resolution of the FDTD models is 22 km (East-West) x 11 km (North-South) x 5 km (radially), and they account for 3-D lithosphere conductivities provided by the U.S. Geological Survey. The FDTD-calculated results are compared with surface magnetic fields measured in the region by SuperMAG and INTERMAGNET magnetometers. The FDTD results are also compared with virtual magnetometer data, which calculates the perturbation of the surface magnetic field using output from the BATS-R-US magnetohydrodynamics model. Comparison plots and an analysis of the results will be provided.« less
  5. Abstract

    Electrospinning is commonly used for fabrication of polymer fibers. Melt electrospinning, instead of the commonly used solution electrospinning, offers many advantages in generating polymer fibers without using solvents. However, polymer melts have high viscosity which poses major limitations in producing low diameter fibers. Here, melt electrospinning is investigated at elevated temperatures in inert atmosphere to reduce fiber diameters while suppressing thermal degradation. Two types of spinneret configurations, syringe and wire, with two distinct outcomes are studied. In syringe‐based electrospinning, increasing the nozzle temperature from 300 to 360 °C in nitrogen reduced fiber diameter significantly from 33 ± 5 to 10 ± 4 µm. Electrospinning in nitrogen leads to formation of fibers even at a high nozzle temperature of 360 °C, while this temperature leads to thermal degradation when spinning in air. In contrast, increasing the temperature of wire electrospinning setup do not lead to a noticeable reduction in diameter. This is attributed to the viscosity‐dependent flow rate in this method. Increasing the temperature leads to increased flow rates, promoting the formation of thicker fibers, while the increased stretchability promotes the formation of thinner fibers. The results clearly demonstrate advantages of developing polymer microfibers in inert atmosphere to avoid thermal degradation with a temperature‐independentmore »flow control.

    « less