skip to main content


Title: Hybrid Slab Systems in High-rises for More Sustainable Design
Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry.  more » « less
Award ID(s):
1659877
NSF-PAR ID:
10192367
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IMAC-XXXVIII Conference and Exposition on Structural Dynamics.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry. 
    more » « less
  2. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and naillaminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry. 
    more » « less
  3. The gap between research in academia and industry is narrowing as collaboration between the two becomes critical. Topology optimization has the potential to reduce the carbon footprint by minimizing material usage within the design space based on given loading conditions. While being a useful tool in the design phase of the engineering process, its complexity has hindered its progression and integration in actual design. As a result, the advantages of topology optimization have yet to be implemented into common engineering practice. To facilitate the implementation and promote the usage of topology optimization, San Francisco State University and the University of South Carolina collaborated with ARUP, a world leader in structural designs, to develop an Automated Topology Optimization Platform (ATOP) to synchronize commonly used industry software programs and provide a user-friendly and automated solution to perform topology optimization. ATOP allows for users to form a conceptual understanding of a structure’s ideal shape and design in terms of ideal material placement by iterating various parameters such as volume fraction, and minimum and maximum member size at the start of a project. With the developed platform, a high-rise building design from the literature was first adopted to validate the results from ATOP, after which an actual design project from ARUP was utilized to fully explore its functionality and versatility. Results show that ATOP has the potential to create aesthetic and structurally sound designs through an automated and intelligent process. 
    more » « less
  4. The gap between research in academia and industry is narrowing as collaboration between the two becomes critical. Topology optimization has the potential to reduce the carbon footprint by minimizing material usage within the design space based on given loading conditions. While being a useful tool in the design phase of the engineering process, its complexity has hindered its progression and integration in actual design. As a result, the advantages of topology optimization have yet to be implemented into common engineering practice. To facilitate the implementation and promote the usage of topology optimization, San Francisco State University and the University of South Carolina collaborated with ARUP, a world leader in structural designs, to develop an Automated Topology Optimization Platform (ATOP) to synchronize commonly used industry software programs and provide a user-friendly and automated solution to perform topology optimization. ATOP allows for users to form a conceptual understanding of a structure’s ideal shape and design in terms of ideal material placement by iterating various parameters such as volume fraction, and minimum and maximum member size at the start of a project. With developed platform, a high-rise building design from the literature was first adopted to validate the results from ATOP, after which an actual design project from ARUP was utilized to fully explore its functionality and versatility. Results show that ATOP has the potential to create aesthetic and structurally sound designs through an automated and intelligent process. 
    more » « less
  5. The gap between research in academia and industry is narrowing as collaboration between the two becomes critical. Topology optimization has the potential to reduce the carbon footprint by minimizing material usage within the design space based on given loading conditions. While being a useful tool in the design phase of the engineering process, its complexity has hindered its progression and integration in actual design. As a result, the advantages of topology optimization have yet to be implemented into common engineering practice. To facilitate the implementation and promote the usage of topology optimization, San Francisco State University and the University of South Carolina collaborated with ARUP, a world leader in structural designs, to develop an Automated Topology Optimization Platform (ATOP) to synchronize commonly used industry software programs and provide a user-friendly and automated solution to perform topology optimization. ATOP allows for users to form a conceptual understanding of a structure’s ideal shape and design in terms of ideal material placement by iterating various parameters such as volume fraction, and minimum and maximum member size at the start of a project. With developed platform, a high-rise building design from the literature was first adopted to validate the results from ATOP, after which an actual design project from ARUP was utilized to fully explore its functionality and versatility. Results show that ATOP has the potential to create aesthetic and structurally sound designs through an automated and intelligent process. 
    more » « less