skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid Slab Systems in High-rises for More Sustainable Design
Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry.  more » « less
Award ID(s):
1659877
PAR ID:
10192367
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IMAC-XXXVIII Conference and Exposition on Structural Dynamics.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry. 
    more » « less
  2. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and naillaminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry. 
    more » « less
  3. Advancements in materials, components, and building systems over the past decade have enabled the construction of taller mass timber structures, creating new opportunities for seismic design in mid- and high-rise buildings. This paper presents a systematic comparison of two full-scale shake table test programs-the 10-story NHERT TallWood and the 6-story NHERT Converging Design both conducted at the University of California, San Diego (UCSD) Large High-Performance Outdoor Shake Table (LHPOST). These projects aimed to develop and validate seismic design approaches for wood buildings in high seismic regions. Both structures employed a self-centering mass timber rocking wall system with distributed energy dissipation provided by U-shaped Flexural Plates (UFPs), enabling direct comparison of structural response and design considerations across different building heights. Despite ongoing innovations, many tall timber buildings still rely on concrete cores or steel braced frames for lateral resistance due to a limited number of code- approved timber systems and an industry preference for traditional solutions. This comparative study highlights the performance of timber-based lateral systems under seismic loading and supports their broader adoption in resilient, mid-and high-rise construction. 
    more » « less
  4. Buildings consume over half of annual energy supply as embodied and operating energy in their construction and operation releasing harmful emissions to the atmosphere. Over 90 % of the embodied energy is attributed to construction materials used in building structure, envelope, and interiors that must be reduced to minimize material use. Concrete is one of the major materials that contributes significantly to the energy and carbon footprint of buildings, as it is responsible for 5-9 % of global carbon emission. Because most of the concrete use in the building sector occurs in building structures, assessing how building design parameters influence its environmental sustainability is important. One of the design parameters that impact the sustainability of buildings is the aspect ratio, which is defined as the ratio of horizontal to vertical surface area of a building. A building with the same floor area can be designed horizontally or vertically with different aspect ratios, which will influence its structural design and eventually the amount of concrete used in the building. In this paper, we examine how aspect ratio may affect the environmental sustainability of a buildings foundation, structural framing, and slab. We model the structure of a generic building with different aspect ratio to analyze if aspect ratio can help reduce the energy and carbon embodied in reinforced concrete structures. 
    more » « less
  5. Portland cement concrete, the most used manufactured material in the world, is a significant contributor to anthropogenic carbon dioxide (CO 2 ) emissions. While strategies such as point-source CO 2 capture, renewable fuels, alternative cements, and supplementary cementitious materials can yield substantial reductions in cement-related CO 2 emissions, emerging biocement technologies based on the mechanisms of microbial biomineralization have the potential to radically transform the industry. In this work, we present a review and meta-analysis of the field of biomineralized building materials and their potential to improve the sustainability and durability of civil infrastructure. First, we review the mechanisms of microbial biomineralization, which underpin our discussion of current and emerging biomineralized material technologies and their applications within the construction industry. We conclude by highlighting the technical, economic, and environmental challenges that must be addressed before new, innovative biomineralized material technologies can scale beyond the laboratory. 
    more » « less