Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or even layout is completed. However, running synthesis merely as a feedback for HDL code is computationally not economical especially in early design phases when the code needs to be frequently modified. Furthermore, in late stages of design convergence burdened with high-impact engineering change orders (ECO’s), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL) design assessment without going through the synthesis process. It would allow designers to quickly evaluate the performance-power tradeoff among different options of RTL designs. Experimental results show that our proposed technique achieves an average of 95% prediction accuracy in terms of post-placement analysis, and is 6 orders of magnitude faster than evaluation by running logic synthesis and placement.
more »
« less
How Good Is Your Verilog RTL Code?: A Quick Answer from Machine Learning
Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or even layout is completed. However, running synthesis merely as a feedback for HDL code is computationally not economical especially in early design phases when the code needs to be frequently modified. Furthermore, in late stages of design convergence burdened with high-impact engineering change orders (ECO’s), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL) design assessment without going through the synthesis process. It would allow designers to quickly evaluate the performance-power tradeoff among different options of RTL designs. Experimental results show that our proposed technique achieves an average of 95% prediction accuracy in terms of post-placement analysis, and is 6 orders of magnitude faster than evaluation by running logic synthesis and placement.
more »
« less
- Award ID(s):
- 2106828
- PAR ID:
- 10435308
- Date Published:
- Journal Name:
- 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
- Page Range / eLocation ID:
- 1 to 9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Processors are typically designed in Register Transfer Level (RTL) languages, which give designers low-level control over circuit structure and timing. To achieve good performance, processors are pipelined, with multiple instructions executing concurrently in different parts of the circuit. Thus even though processors implement a fundamentally sequential specification (the instruction set architecture), the implementation is highly concurrent. The interactions of multiple instructions---potentially speculative---can cause incorrect behavior. We present PDL, a novel hardware description language targeted at the construction of pipelined processors. PDL provides one instruction at a time semantics: the first language to enforce that the generated pipelined circuit has the same behavior as a sequential specification. This enforcement facilitates design-space exploration. Adding or removing pipeline stages, moving operations across stages, or otherwise changing pipeline structure normally requires careful analysis of bypass paths and stall logic; with PDL, this analysis is handled by the PDL compiler. At the same time, PDL still offers designers fine-grained control over performance-critical microarchitectural choices such as timing of operations, data forwarding, and speculation. We demonstrate PDL's expressive power and ease of design exploration by implementing several RISC-V cores with differing microarchitectures. Our results show that PDL does not impose significant performance or area overhead compared to a standard HDL.more » « less
-
The increasing complexity of integrated circuit design requires customizing Power, Performance, and Area (PPA) metrics according to different application demands. However, most engineers cannot anticipate requirements early in the design process, often discovering mismatches only after synthesis, necessitating iterative optimization or redesign. Some works have shown the promising capabilities of large language models (LLMs) in hardware design generation tasks, but they fail to tackle the PPA trade-off problem. In this work, we propose an LLM-based reinforcement learning framework, PPA-RTL, aiming to introduce LLMs as a cutting-edge automation tool by directly incorporating post-synthesis metrics PPA into the hardware design generation phase. We design PPA metrics as reward feedback to guide the model in producing designs aligned with specific optimization objectives across various scenarios. The experimental results demonstrate that PPA-RTL models, optimized for Power, Performance, Area, or their various combinations, significantly improve in achieving the desired trade-offs, making PPA-RTL applicable to a variety of application scenarios and project constraints.more » « less
-
Increasingly complex Intellectual Property (IP) design, coupled with shorter Time-To-Market (TTM), breeds flaws at various levels of the Integrated Circuit (IC) production. With access to IPs at all stages of production, design defects can easily be found and corrected, i.e., knowledge of the Register Transfer Level (RTL) code allows for the option of easy defect detection. However, third-party IPs are typically delivered as hard IPs or gate-level netlists, which complicates the defect detection process. The inaccessibility of source RTL code and the lack of RTL recovery tools make the task of finding high-level security flaws in logic intractable. Upon this request, in this paper, we present an RTL recovery tool suite named RERTL that leverages advanced graph algorithms including Lengauer-Tarjan's dominator tree and Euler tour tree technique to assist in netlist analysis. Supported by RERTL, logical states and their interactions are recovered from the initial design in the format of gate-level netlists. After the recovery of state interaction, RERTL further converts the full design into human-readable RTL. A series of netlist case studies were examined using RERTL covering benign logic structures, designs with accidental defects, and designs with deliberate backdoors. The experimental results show that all of our designs at various complexities were recoverable within seconds.more » « less
-
We describe a fast, abstract method for reverse engineering (RE) field programmable gate array (FPGA) look-up-tables (LUTs). Our method has direct applications to hardware (HW) metering and FPGA fingerprinting, and our approach allows easy portability and application to most L UT based FPGAs. Unlike conventional RE methodologies that rely on vendor specific code (like Xilinx XDL), tools, configuration files, components, etc., our methodology is not dependent on any specific FPGA or FPGA computer aided design (CAD) tool. We use generic hardware description language (HDL) code based on specially connected CASE statements to program the L UTs on a target FPGA. Our specially connected CASE statements allow us to guide placement of L UT functions on successive synthesis runs. This enables us to quickly determine which bits in the FPGA 's configuration file match to FPGA L UT bits. After we know which bits are L UT bits, we can go further and match specific LUT bits to specific bits in the configuration file, thereby creating a one-to-one mapping between every L UT memory cell and its matching bit in the configuration file. In this paper we present our CASE statement functions for performing one-to-one mapping of all FPGA L UT memory cell bits to specific configuration file bits. We have successfully applied our methods to several 7000 series Xilinx and Intel (Altera) FPGAs.more » « less
An official website of the United States government

