As robots move from the laboratory into the real world, motion planning will need to account for model uncertainty and risk. For robot motions involving intermittent contact, planning for uncertainty in contact is especially important, as failure to successfully make and maintain contact can be catastrophic. Here, we model uncertainty in terrain geometry and friction characteristics, and combine a risk-sensitive objective with chance constraints to provide a trade-off between robustness to uncertainty and constraint satisfaction with an arbitrarily high feasibility guarantee. We evaluate our approach in two simple examples: a push-block system for benchmarking and a single-legged hopper. We demonstrate that chance constraints alone produce trajectories similar to those produced using strict complementarity constraints; however, when equipped with a robust objective, we show the chance constraints can mediate a trade-off between robustness to uncertainty and strict constraint satisfaction. Thus, our study may represent an important step towards reasoning about contact uncertainty in motion planning.
more »
« less
Chance-Constrained Sequential Convex Programming for Robust Trajectory Optimization
Planning safe trajectories for nonlinear dynamical systems subject to model uncertainty and disturbances is challenging. In this work, we present a novel approach to tackle chance-constrained trajectory planning problems with nonconvex constraints, whereby obstacle avoidance chance constraints are reformulated using the signed distance function. We propose a novel sequential convex programming algorithm and prove that under a discrete time problem formulation, it is guaranteed to converge to a solution satisfying first-order optimality conditions. We demonstrate the approach on an uncertain 6 degrees of freedom spacecraft system and show that the solutions satisfy a given set of chance constraints.
more »
« less
- Award ID(s):
- 1931815
- PAR ID:
- 10192537
- Date Published:
- Journal Name:
- 2020 European Control Conference
- Page Range / eLocation ID:
- 1871-1878
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A classic multi-period stochastic energy system expansion planning (ESEP) model aims to address demand uncertainty by requiring immediate demand satisfaction for all scenarios. However, this approach may result in an expensive system that deviates from the planner’s long-term goals, especially when facing unexpectedly high demand scenarios. To address this issue, we propose a chance-constrained stochastic multi-stage ESEP model that allows for a portion of demand to remain unmet in specific periods while still ensuring complete demand satisfaction during most of the planning horizon, including the final period. This approach provides more time flexibility to build infrastructure and assess needs, ultimately reducing costs and allowing for a broader view of infrastructure planning options. To solve the chance-constrained stochastic model, we introduce a binary- search-based progressive hedging algorithm heuristic, which is particularly useful for large-scale models. We demonstrate the effectiveness and benefits of implementing the chance-constrained model through a case study of Rwanda using real-world data.more » « less
-
In hierarchical planning for Markov decision processes (MDPs), temporal abstraction allows planning with macro-actions that take place at different time scale in the form of sequential composition. In this paper, we propose a novel approach to compositional reasoning and hierarchical planning for MDPs under co-safe temporal logic constraints. In addition to sequential composition, we introduce a composition of policies based on generalized logic composition: Given sub-policies for sub-tasks and a new task expressed as logic compositions of subtasks, a semi-optimal policy, which is optimal in planning with only sub-policies, can be obtained by simply composing sub-polices. Thus, a synthesis algorithm is developed to compute optimal policies efficiently by planning with primitive actions, policies for sub-tasks, and the compositions of sub-policies, for maximizing the probability of satisfying constraints specified in the fragment of co-safe temporal logic. We demonstrate the correctness and efficiency of the proposed method in stochastic planning examples with a single agent and multiple task specifications.more » « less
-
Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)Planning in real-world settings often entails addressing partial observability while aligning with users’ requirements. We present a novel framework for expressing users’ constraints and preferences about agent behavior in a partially observable setting using parameterized belief-state query (BSQ) policies in the setting of goal- oriented partially observable Markov decision processes (gPOMDPs). We present the first formal analysis of such constraints and prove that while the expected cost function of a parameterized BSQ policy w.r.t its parameters is not convex, it is piecewise constant and yields an implicit discrete parameter search space that is finite for finite horizons. This theoretical result leads to novel algorithms that optimize gPOMDP agent behavior with guaranteed user alignment. Analysis proves that our algorithms converge to the optimal user-aligned behavior in the limit. Empirical results show that parameterized BSQ policies provide a computationally feasible approach for user-aligned planning in partially observable settings.more » « less
-
Power grids based on traditional N-1 design criteria are no longer adequate because these designs do not withstand extreme weather events or cascading failures. Microgrid system has the capability of enhancing grid resilience through defensive or islanded operations in contingency. This paper presents a probabilistic framework for planning resilient distribution system via distributed wind and solar integration. We first define three aspects of resilient distribution system, namely prevention, survivability and recovery. Then we review the distributed generation planning models that comprehend moment estimation, chance constraints and bi-directional power flow. We strive to achieve two objectives: 1) enhancing the grid survivability when distribution lines are damaged or disconnected in the aftermath of disaster attack; and 2) accelerating the recovery of damaged assets through pro-active maintenance and repair services. A simple 9-node network is provided to demonstrate the application of the proposed resilience planning frameworkmore » « less
An official website of the United States government

