skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chance-constrained multi-stage stochastic energy system expansion planning with demand satisfaction flexibility
A classic multi-period stochastic energy system expansion planning (ESEP) model aims to address demand uncertainty by requiring immediate demand satisfaction for all scenarios. However, this approach may result in an expensive system that deviates from the planner’s long-term goals, especially when facing unexpectedly high demand scenarios. To address this issue, we propose a chance-constrained stochastic multi-stage ESEP model that allows for a portion of demand to remain unmet in specific periods while still ensuring complete demand satisfaction during most of the planning horizon, including the final period. This approach provides more time flexibility to build infrastructure and assess needs, ultimately reducing costs and allowing for a broader view of infrastructure planning options. To solve the chance-constrained stochastic model, we introduce a binary- search-based progressive hedging algorithm heuristic, which is particularly useful for large-scale models. We demonstrate the effectiveness and benefits of implementing the chance-constrained model through a case study of Rwanda using real-world data.  more » « less
Award ID(s):
2330437
PAR ID:
10625232
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Electrical Power & Energy Systems
Volume:
155
Issue:
PA
ISSN:
0142-0615
Page Range / eLocation ID:
109499
Subject(s) / Keyword(s):
Energy system expansion planning (ESEP) Multi-stage stochastic optimization Power deficit flexibility Chance constraints Progressive hedging algorithm (PHA) Sub-Saharan Africa
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As robots move from the laboratory into the real world, motion planning will need to account for model uncertainty and risk. For robot motions involving intermittent contact, planning for uncertainty in contact is especially important, as failure to successfully make and maintain contact can be catastrophic. Here, we model uncertainty in terrain geometry and friction characteristics, and combine a risk-sensitive objective with chance constraints to provide a trade-off between robustness to uncertainty and constraint satisfaction with an arbitrarily high feasibility guarantee. We evaluate our approach in two simple examples: a push-block system for benchmarking and a single-legged hopper. We demonstrate that chance constraints alone produce trajectories similar to those produced using strict complementarity constraints; however, when equipped with a robust objective, we show the chance constraints can mediate a trade-off between robustness to uncertainty and strict constraint satisfaction. Thus, our study may represent an important step towards reasoning about contact uncertainty in motion planning. 
    more » « less
  2. Planning safe trajectories for nonlinear dynamical systems subject to model uncertainty and disturbances is challenging. In this work, we present a novel approach to tackle chance-constrained trajectory planning problems with nonconvex constraints, whereby obstacle avoidance chance constraints are reformulated using the signed distance function. We propose a novel sequential convex programming algorithm and prove that under a discrete time problem formulation, it is guaranteed to converge to a solution satisfying first-order optimality conditions. We demonstrate the approach on an uncertain 6 degrees of freedom spacecraft system and show that the solutions satisfy a given set of chance constraints. 
    more » « less
  3. In this paper, pursuit-evasion scenarios in a stochastic flow field involving one pursuer and one evader are analyzed. Using a forward reachability set-based approach and the associated level set equations, nominal solutions of the players are generated. The dynamical system is linearized along the nominal solution to formulate a chance-constrained, linear-quadratic stochastic dynamic game. Assuming an affine disturbance feedback structure, the proposed game is solved using the standard Gauss-Seidel iterative scheme. Numerical simulations demonstrate the proposed approach for realistic flow fields. 
    more » « less
  4. Popularization of the Internet-of-Things (IoT) has brought widespread concerns on IoT security, especially in face of several recent security incidents related to IoT devices. Due to the resource-constrained nature of many IoT devices, security offloading has been proposed to provide good-enough security for IoT with minimum overhead on the devices. In this paper, we investigate the inevitable risk associated with security offloading: the unprotected and unmonitored transmission from IoT devices to the offloaded security mechanisms. An important challenge in modeling the security risk is the dynamic nature of IoT due to demand fluctuations and infrastructure instability. We propose a stochastic model to capture both the expected and worst-case security risks of an IoT system. We then propose a framework to efficiently address the optimal robust deployment of security mechanisms in IoT. We use results from extensive simulations to demonstrate the superb performance and efficiency of our approach compared to several other algorithms. 
    more » « less
  5. Facing stochastic variations of the loads due to an increasing penetration of renewable energy generation, online decision making under uncertainty in modern power systems is capturing power researchers' attention in recent years. To address this issue while achieving a good balance between system security and economic objectives, we propose a surrogate-enhanced scheme under a joint chance-constrained (JCC) optimal power-flow (OPF) framework. Starting from a stochastic-sampling procedure, we first utilize the copula theory to simulate the dependence among multivariate uncertain inputs. Then, to reduce the prohibitive computational time required in the traditional Monte-Carlo (MC) method, we propose to use a polynomial-chaos-based surrogate that allows us to efficiently evaluate the power-system model at non-Gaussian distributed sampled values with a negligible computing cost. Learning from the MC simulated samples, we further proposed a hybrid adaptive approach to overcome the conservativeness of the JCC-OPF by utilizing correlation of the system states, which is ignored in the traditional Boole's inequality. The simulations conducted on the modified Illinois test system demonstrate the excellent performance of the proposed method. 
    more » « less