We consider the problem of time-limited robotic exploration in previously unseen environments where exploration is limited by a predefined amount of time. We propose a novel exploration approach using learning-augmented model-based planning. We generate a set of sub goals associated with frontiers on the current map and derive a Bellman Equation for exploration with these subgoals. Visual sensing and advances in semantic mapping of indoor scenes are exploited for training a deep convolutional neural network to estimate properties associated with each frontier: the expected unobserved area beyond the frontier and the expected time steps (discretized actions) required to explore it. The proposed model-based planner is guaranteed to explore the whole scene if time permits. We thoroughly evaluate our approach on a large-scale pseudo-realistic indoor dataset (Matterport3D) with the Habitat simulator. We compare our approach with classical and more recent RL-based exploration methods. Our approach surpasses the greedy strategies by 2.1% and the RL-based exploration methods by 8.4% in terms of coverage.
more »
« less
Map-Predictive Motion Planning in Unknown Environments
Algorithms for motion planning in unknown environments are generally limited in their ability to reason about the structure of the unobserved environment. As such, current methods generally navigate unknown environments by relying on heuristic methods to choose intermediate objectives along frontiers. We present a unified method that combines map prediction and motion planning for safe, time-efficient autonomous navigation of unknown environments by dynamically-constrained robots. We propose a data-driven method for predicting the map of the unobserved environment, using the robot's observations of its surroundings as context. These map predictions are then used to plan trajectories from the robot's position to the goal without requiring frontier selection. We demonstrate that our map-predictive motion planning strategy yields a substantial improvement in trajectory time over a naive frontier pursuit method and demonstrates similar performance to methods using more sophisticated frontier selection heuristics with significantly shorter computation time.
more »
« less
- Award ID(s):
- 1931815
- PAR ID:
- 10192541
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation
- ISSN:
- 1049-3492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The TEB hierarchical planner for real-time navigation through unknown environments is highly effective at balancing collision avoidance with goal directed motion. Designed over several years and publications, it implements a multi-trajectory optimization based synthesis method for identifying topologically distinct trajectory candidates through navigable space. Unfortunately, the underlying factor graph approach to the optimization problem induces a mismatch between grid-based representations and the optimization graph, which leads to several time and optimization inefficiencies. This paper explores the impact of using egocentric, perception space representations for the local planning map. Doing so alleviates many of the identified issues related to TEB and leads to a new method called egoTEB. Timing experiments and Monte Carlo evaluations in benchmark worlds quantify the benefits of egoTEB for navigation through uncertain environments.more » « less
-
null (Ed.)Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.more » « less
-
An exciting frontier in robotic manipulation is the use of multiple arms at once. However, planning concurrent motions is a challenging task using current methods. The high-dimensional composite state space renders many well-known motion planning algorithms intractable.Recently, Multi-Agent Path Finding (MAPF) algorithms have shown promise in discrete 2D domains, providing rigorous guarantees. However, widely used conflict-based methods in MAPF assume an efficient single-agent motion planner. This poses challenges in adapting them to manipulation cases where this assumption does not hold, due to the high dimensionality of configuration spaces and the computational bottlenecks associated with collision checking.To this end, we propose an approach for accelerating conflict-based search algorithms by leveraging their repetitive and incremental nature -- making them tractable for use in complex scenarios involving multi-arm coordination in obstacle-laden environments. We show that our method preserves completeness and bounded sub-optimality guarantees, and demonstrate its practical efficacy through a set of experiments with up to 10 robotic arms.more » « less
-
We consider the problem of coverage planning for a particular type of very simple mobile robot. The robot must be able to translate in a commanded direction (specified in a global reference frame), with bounded error on the motion direction, until reaching the environment boundary. The objective, for a given environment map, is to generate a sequence of motions that is guaranteed to cover as large a portion of that environment as possible, in spite of the severe limits on the robot's sensing and actuation abilities. We show how to model the knowledge available to this kind of robot about its own position within the environment, show how to compute the region whose coverage can be guaranteed for a given plan, and characterize regions whose coverage cannot be guaranteed by any plan. We also describe a heuristic algorithm that generates coverage plans for this robot, based on a search across a specially-constructed graph. Simulation results demonstrate the effectiveness of the approach.more » « less
An official website of the United States government

