skip to main content


Title: egoTEB: Egocentric, Perception Space Navigation Using Timed-Elastic-Bands
The TEB hierarchical planner for real-time navigation through unknown environments is highly effective at balancing collision avoidance with goal directed motion. Designed over several years and publications, it implements a multi-trajectory optimization based synthesis method for identifying topologically distinct trajectory candidates through navigable space. Unfortunately, the underlying factor graph approach to the optimization problem induces a mismatch between grid-based representations and the optimization graph, which leads to several time and optimization inefficiencies. This paper explores the impact of using egocentric, perception space representations for the local planning map. Doing so alleviates many of the identified issues related to TEB and leads to a new method called egoTEB. Timing experiments and Monte Carlo evaluations in benchmark worlds quantify the benefits of egoTEB for navigation through uncertain environments.  more » « less
Award ID(s):
1849333
NSF-PAR ID:
10211722
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation
Page Range / eLocation ID:
2703 to 2709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A trajectory is a sequence of observations in time and space, for examples, the path formed by maritime vessels, orbital debris, or aircraft. It is important to track and reconstruct vessel trajectories using the Automated Identification System (AIS) data in real-world applications for maritime navigation safety. In this project, we use the National Science Foundation (NSF)'s Algorithms for Threat Detection program (ATD) 2019 Challenge AIS data to develop novel trajectory reconstruction method. Given a sequence ofNunlabeled timestamped observations, the goal is to track trajectories by clustering the AIS points with predicted positions using the information from the true trajectoriesΧ. It is a natural way to connect the observed pointxîwith the closest point that is estimated by using the location, time, speed, and angle information from a set of the points under considerationxii∈ {1, 2, …,N}. The introduced method is an unsupervised clustering-based method that does not train a supervised model which may incur a significant computational cost, so it leads to a real-time, reliable, and accurate trajectory reconstruction method. Our experimental results show that the proposed method successfully clusters vessel trajectories. 
    more » « less
  2. For socially assistive robots (SAR) to be accepted into complex and stochastic human environments, it is important to account for subtle social norms. In this paper, we propose a novel approach to socially-aware navigation (SAN) which garnered an immense interest in the Human-Robot Interaction(HRI) community. We use a multi-objective optimization tool called the Pareto Concavity Elimination Transformation (PaCcET) to capture the non-linear human navigation behavior, a novel contribution to the community. We use autonomously sensed distance-based features that captures the social norms and associated social costs for a given trajectory point towards the goal. Rather than use a finely-tuned linear combination of these costs, we use PaCcET to select an optimized future trajectory point, associated with a non-linear combination of the costs. Existing research in this domain concentrates on geometric reasoning, model-based, and learning approaches, which have their own pros and cons. This approach is distinct from prior work in this area. We showed in a simulation that the PaCcET based trajectory planner not only is able to avoid collisions and reach the intended destination in static and dynamic environments but also considers a human’s personal space in the trajectory selection process. 
    more » « less
  3. Barrier function-based inequality constraints are a means to enforce safety specifications for control systems. When used in conjunction with a convex optimization program, they provide a computationally efficient method to enforce safety for the general class of control-affine systems. One of the main assumptions when taking this approach is the a priori knowledge of the barrier function itself, i.e., knowledge of the safe set. In the context of navigation through unknown environments where the locally safe set evolves with time, such knowledge does not exist. This manuscript focuses on the synthesis of a zeroing barrier function characterizing the safe set based on safe and unsafe sample measurements, e.g., from perception data in navigation applications. Prior work formulated a supervised machine learning algorithm whose solution guaranteed the construction of a zeroing barrier function with specific level-set properties. However, it did not explore the geometry of the neural network design used for the synthesis process. This manuscript describes the specific geometry of the neural network used for zeroing barrier function synthesis, and shows how the network provides the necessary representation for splitting the state space into safe and unsafe regions. 
    more » « less
  4. Natural environments are often filled with obstacles and disturbances. Traditional navigation and planning approaches normally depend on finding a traversable “free space” for robots to avoid unexpected contact or collision. We hypothesize that with a better understanding of the robot–obstacle interactions, these collisions and disturbances can be exploited as opportunities to improve robot locomotion in complex environments. In this article, we propose a novel obstacle disturbance selection (ODS) framework with the aim of allowing robots to actively select disturbances to achieve environment-aided locomotion. Using an empirically characterized relationship between leg–obstacle contact position and robot trajectory deviation, we simplify the representation of the obstacle-filled physical environment to a horizontal-plane disturbance force field. We then treat each robot leg as a “disturbance force selector” for prediction of obstacle-modulated robot dynamics. Combining the two representations provides analytical insights into the effects of gaits on legged traversal in cluttered environments. We illustrate the predictive power of the ODS framework by studying the horizontal-plane dynamics of a quadrupedal robot traversing an array of evenly-spaced cylindrical obstacles with both bounding and trotting gaits. Experiments corroborate numerical simulations that reveal the emergence of a stable equilibrium orientation in the face of repeated obstacle disturbances. The ODS reduction yields closed-form analytical predictions of the equilibrium position for different robot body aspect ratios, gait patterns, and obstacle spacings. We conclude with speculative remarks bearing on the prospects for novel ODS-based gait control schemes for shaping robot navigation in perturbation-rich environments. 
    more » « less
  5. Real-time navigation in non-trivial environments by micro aerial vehicles (MAVs) predominantly relies on modelling the MAV with idealized geometry, such as a sphere. Simplified, conservative representations increase the likelihood of a planner failing to identify valid paths. That likelihood increases the more a robot's geometry differs from the idealized version. Few current approaches consider these situations; we are unaware of any that do so using perception space representations. This work introduces the egocan, a perception space obstacle representation using line-of-sight free space estimates, and 3D Gap, a perception space approach to gap finding for identifying goal-directed, collision-free directions of travel through 3D space. Both are integrated, with real-time considerations in mind, to define a local planner module of a hierarchical navigation system. The result is Aerial Local Planning in Perception Space (AeriaLPiPS). AeriaLPiPS is shown to be capable of safely navigating a MAV with non-idealized geometry through various environments, including those impassable by traditional real-time approaches. The open source implementation of this work is available at github.com/ivaROS/AeriaLPiPS. 
    more » « less