skip to main content


Title: The PETLON Algorithm to Plan Efficiently for Task-Level-Optimal Navigation
Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.  more » « less
Award ID(s):
1925044
NSF-PAR ID:
10248929
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Artificial Intelligence Research
Volume:
69
ISSN:
1076-9757
Page Range / eLocation ID:
471 to 500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures. 
    more » « less
  2. This paper takes the first step towards a reactive, hierarchical multi-robot task allocation and planning framework given a global Linear Temporal Logic specification. The capabilities of both quadrupedal and wheeled robots are leveraged via a heterogeneous team to accomplish a variety of navigation and delivery tasks. However, when deployed in the real world, all robots can be susceptible to different types of disturbances, including but not limited to locomotion failures, human interventions, and obstructions from the environment. To address these disturbances, we propose task-level local and global reallocation strategies to efficiently generate updated action-state sequences online while guaranteeing the completion of the original task. These task reallocation approaches eliminate reconstructing the entire plan or resynthesizing a new task. To integrate the task planner with low-level inputs, a Behavior Tree execution layer monitors different types of disturbances and employs the reallocation methods to make corresponding recovery strategies. To evaluate this planning framework, dynamic simulations are conducted in a realistic hospital environment with a heterogeneous robot team consisting of quadrupeds and wheeled robots for delivery tasks. 
    more » « less
  3. Abstract

    In this paper, we address the problem of autonomous multi-robot mapping, exploration and navigation in unknown, GPS-denied indoor or urban environments using a team of robots equipped with directional sensors with limited sensing capabilities and limited computational resources. The robots have no a priori knowledge of the environment and need to rapidly explore and construct a map in a distributed manner using existing landmarks, the presence of which can be detected using onboard senors, although little to no metric information (distance or bearing to the landmarks) is available. In order to correctly and effectively achieve this, the presence of a necessary density/distribution of landmarks is ensured by design of the urban/indoor environment. We thus address this problem in two phases: (1) During the design/construction of the urban/indoor environment we can ensure that sufficient landmarks are placed within the environment. To that end we develop afiltration-based approach for designing strategic placement of landmarks in an environment. (2) We develop a distributed algorithm which a team of robots, with no a priori knowledge of the environment, can use to explore such an environment, construct a topological map requiring no metric/distance information, and use that map to navigate within the environment. This is achieved using a topological representation of the environment (called aLandmark Complex), instead of constructing a complete metric/pixel map. The representation is built by the robot as well as used by them for navigation through a balanced strategy involving exploration and exploitation. We use tools from homology theory for identifying “holes” in the coverage/exploration of the unknown environment and hence guide the robots towards achieving a complete exploration and mapping of the environment. Our simulation results demonstrate the effectiveness of the proposed metric-free topological (simplicial complex) representation in achieving exploration, localization and navigation within the environment.

     
    more » « less
  4. null (Ed.)
    Earlier work has shown that reusing experience from prior motion planning problems can improve the efficiency of similar, future motion planning queries. However, for robots with many degrees-of-freedom, these methods exhibit poor generalization across different environments and often require large datasets that are impractical to gather. We present SPARK and FLAME, two experience-based frameworks for sampling-based planning applicable to complex manipulators in 3D environments. Both combine samplers associated with features from a workspace decomposition into a global biased sampling distribution. SPARK decomposes the environment based on exact geometry while FLAME is more general, and uses an octree-based decomposition obtained from sensor data. We demonstrate the effectiveness of SPARK and FLAME on a real and simulated Fetch robot tasked with challenging pick-and-place manipulation problems. Our approaches can be trained incrementally and significantly improve performance with only a handful of examples, generalizing better over diverse tasks and environments as compared to prior approaches. 
    more » « less
  5. Natural environments are often filled with obstacles and disturbances. Traditional navigation and planning approaches normally depend on finding a traversable “free space” for robots to avoid unexpected contact or collision. We hypothesize that with a better understanding of the robot–obstacle interactions, these collisions and disturbances can be exploited as opportunities to improve robot locomotion in complex environments. In this article, we propose a novel obstacle disturbance selection (ODS) framework with the aim of allowing robots to actively select disturbances to achieve environment-aided locomotion. Using an empirically characterized relationship between leg–obstacle contact position and robot trajectory deviation, we simplify the representation of the obstacle-filled physical environment to a horizontal-plane disturbance force field. We then treat each robot leg as a “disturbance force selector” for prediction of obstacle-modulated robot dynamics. Combining the two representations provides analytical insights into the effects of gaits on legged traversal in cluttered environments. We illustrate the predictive power of the ODS framework by studying the horizontal-plane dynamics of a quadrupedal robot traversing an array of evenly-spaced cylindrical obstacles with both bounding and trotting gaits. Experiments corroborate numerical simulations that reveal the emergence of a stable equilibrium orientation in the face of repeated obstacle disturbances. The ODS reduction yields closed-form analytical predictions of the equilibrium position for different robot body aspect ratios, gait patterns, and obstacle spacings. We conclude with speculative remarks bearing on the prospects for novel ODS-based gait control schemes for shaping robot navigation in perturbation-rich environments. 
    more » « less