skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reply to: Jaw roll and jaw yaw in early mammals
Award ID(s):
1661129
PAR ID:
10192793
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature
Volume:
582
Issue:
7812
ISSN:
0028-0836
Page Range / eLocation ID:
E9 to E12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present MuteIt, an ear-worn system for recognizing unvoiced human commands. MuteIt presents an intuitive alternative to voice-based interactions that can be unreliable in noisy environments, disruptive to those around us, and compromise our privacy. We propose a twin-IMU set up to track the user's jaw motion and cancel motion artifacts caused by head and body movements. MuteIt processes jaw motion during word articulation to break each word signal into its constituent syllables, and further each syllable into phonemes (vowels, visemes, and plosives). Recognizing unvoiced commands by only tracking jaw motion is challenging. As a secondary articulator, jaw motion is not distinctive enough for unvoiced speech recognition. MuteIt combines IMU data with the anatomy of jaw movement as well as principles from linguistics, to model the task of word recognition as an estimation problem. Rather than employing machine learning to train a word classifier, we reconstruct each word as a sequence of phonemes using a bi-directional particle filter, enabling the system to be easily scaled to a large set of words. We validate MuteIt for 20 subjects with diverse speech accents to recognize 100 common command words. MuteIt achieves a mean word recognition accuracy of 94.8% in noise-free conditions. When compared with common voice assistants, MuteIt outperforms them in noisy acoustic environments, achieving higher than 90% recognition accuracy. Even in the presence of motion artifacts, such as head movement, walking, and riding in a moving vehicle, MuteIt achieves mean word recognition accuracy of 91% over all scenarios. 
    more » « less
  2. null (Ed.)