skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface anchoring controls orientation of a microswimmer in nematic liquid crystal
Abstract Microscopic swimmers, both living and synthetic, often dwell in anisotropic viscoelastic environments. The most representative realization of such an environment is water-soluble liquid crystals. Here, we study how the local orientation order of liquid crystal affects the motion of a prototypical elliptical microswimmer. In the framework of well-validated Beris-Edwards model, we show that the microswimmer’s shape and its surface anchoring strength affect the swimming direction and can lead to reorientation transition. Furthermore, there exists a critical surface anchoring strength for non-spherical bacteria-like microswimmers, such that swimming occurs perpendicular in a sub-critical case and parallel in super-critical case. Finally, we demonstrate that for large propulsion speeds active microswimmers generate topological defects in the bulk of the liquid crystal. We show that the location of these defects elucidates how a microswimmer chooses its swimming direction. Our results can guide experimental works on control of bacteria transport in complex anisotropic environments.  more » « less
Award ID(s):
1707900
PAR ID:
10192951
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
3
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Microorganisms may exhibit rich swimming behaviours in anisotropic fluids, such as liquid crystals, which have direction-dependent physical and rheological properties. Here we construct a two-dimensional computation model to study the undulatory swimming mechanisms of microswimmers in a solution of rigid, rodlike liquid crystal polymers. We describe the fluid phase using Doi's $$Q$$ -tensor model, and treat the swimmer as a finite-length flexible fibre with imposed propagating travelling waves on the body curvature. The fluid–structure interactions are resolved via an immersed boundary method. Compared with the swimming dynamics in Newtonian fluids, we observe non-Newtonian behaviours that feature both enhanced and retarded swimming motions in lyotropic liquid crystal polymers. We reveal the propulsion mechanism by analysing the near-body flow fields and polymeric force distributions, together with asymptotic analysis for an idealized model of Taylor's swimming sheet. 
    more » « less
  2. Bacteria thrive in anisotropic media such as biofilms, biopolymer solutions, and soil pores. In strongly mechanically anisotropic media, physical interactions force bacteria to swim along a preferred direction rather than to execute the three-dimensional random walk due to their run-and-tumble behavior. Despite their ubiquity in nature and importance for human health, there is little understanding of bacterial mechanisms to navigate these media while constrained to one-dimensional motion. Using a biocompatible liquid crystal, we discovered two mechanisms used by bacteria to switch directions in anisotropic media. First, the flagella assemble in bundles that work against each other from opposite ends of the cell body, and the dominating side in this flagellar “Tug-of-Oars” propels the bacterium along the nematic direction. Bacteria frequently revert their swimming direction 180 by a mechanism of flagellar buckling and reorganization on the opposite side of the cell. The Frank elastic energies of the liquid crystal dictate the minimum compression for the Euler buckling of a flagellum. Beyond a critical elasticity of the medium, flagellar motors cannot generate the necessary torque for flagellar buckling, and bacteria are stuck in their configuration. However, we found that bacteria can still switch swimming directions using a second mechanism where individual bundles alternate their rotation. Our results shed light on bacterial strategies to navigate anisotropic media and give rise to questions about sensing environmental cues and adapting at the level of flagellar bundles. The two adaptation mechanisms found here support the use of biocompatible liquid crystals as a synthetic model for bacterial natural environments. Published by the American Physical Society2024 
    more » « less
  3. Many biological microswimmers locomote by periodically beating the densely packed cilia on their cell surface in a wave-like fashion. While the swimming mechanisms of ciliated microswimmers have been extensively studied both from the analytical and the numerical point of view, optimisation of the ciliary motion of microswimmers has received limited attention, especially for non-spherical shapes. In this paper, using an envelope model for the microswimmer, we numerically optimise the ciliary motion of a ciliate with an arbitrary axisymmetric shape. Forward solutions are found using a fast boundary-integral method, and the efficiency sensitivities are derived using an adjoint-based method. Our results show that a prolate microswimmer with a $$2\,{:}\,1$$ aspect ratio shares similar optimal ciliary motion as the spherical microswimmer, yet the swimming efficiency can increase two-fold. More interestingly, the optimal ciliary motion of a concave microswimmer can be qualitatively different from that of the spherical microswimmer, and adding a constraint to the cilia length is found to improve, on average, the efficiency for such swimmers. 
    more » « less
  4. Abstract The dynamics of swimming bacteria depend on the properties of their habitat media. Recently it is shown that the motion of swimming bacteria dispersed directly in a non‐toxic water‐based lyotropic chromonic liquid crystal can be controlled by the director field of the liquid crystal. Here, we investigate whether the macroscopic polar order of a ferroelectric nematic liquid crystal (NF) can be recognized by bacteria B. Subtilis swimming in a water dispersion adjacent to a glassy NFfilm by surface interactions alone. Our results show that B. Subtilis tends to move in the direction antiparallel to the spontaneous electric polarization at the NFsurface. Their speed is found to be the same with or without a polar NFlayer. In contrast to observation on crystal ferroelectric films, the bacteria do not get immobilized. These observations may offer a pathway to creation of polar microinserts to direct bacterial motion in vivo. 
    more » « less
  5. null (Ed.)
    Spatially-varying director fields have become an important part of research and development in liquid crystals. Characterization of the anchoring strength associated with a spatially-varying director is difficult, since the methods developed for a uniform alignment are seldom applicable. Here we characterize the strength of azimuthal surface anchoring produced by the photoalignment technique based on plasmonic metamsaks. The measurements used photopatterned arrays of topological point defects of strength +1 and −1 in thin layers of a nematic liquid crystal. The integer-strength defects split into pairs of half-integer defects with lower elastic energy. The separation distance between the split pair is limited by the azimuthal surface anchoring, which allows one to determine the strength of the latter. The strength of the azimuthal anchoring is proportional to the UV exposure time during the photoalignment of the azobenzene layer. 
    more » « less