skip to main content


Title: Stable homotopy groups of spheres

We discuss the current state of knowledge of stable homotopy groups of spheres. We describe a computational method using motivic homotopy theory, viewed as a deformation of classical homotopy theory. This yields a streamlined computation of the first 61 stable homotopy groups and gives information about the stable homotopy groups in dimensions 62 through 90. As an application, we determine the groups of homotopy spheres that classify smooth structures on spheres through dimension 90, except for dimension 4. The method relies more heavily on machine computations than previous methods and is therefore less prone to error. The main mathematical tool is the Adams spectral sequence.

 
more » « less
Award ID(s):
1904241 2043485 1810638
NSF-PAR ID:
10193146
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
40
ISSN:
0027-8424
Page Range / eLocation ID:
p. 24757-24763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using techniques in motivic homotopy theory, especially the theorem of Gheorghe, the second and the third author on the isomorphism between motivic Adams spectral sequence for $C\tau $ C τ and the algebraic Novikov spectral sequence for $BP_{*}$ B P ∗ , we compute the classical and motivic stable homotopy groups of spheres from dimension 0 to 90, except for some carefully enumerated uncertainties. 
    more » « less
  2. In studying the “11/8-Conjecture” on the Geography Problem in 4-dimensional topology, Furuta proposed a question on the existence of Pin ⁡ ( 2 ) \operatorname {Pin}(2) -equivariant stable maps between certain representation spheres. A precise answer of Furuta’s problem was later conjectured by Jones. In this paper, we completely resolve Jones conjecture by analyzing the Pin ⁡ ( 2 ) \operatorname {Pin}(2) -equivariant Mahowald invariants. As a geometric application of our result, we prove a “10/8+4”-Theorem. We prove our theorem by analyzing maps between certain finite spectra arising from B Pin ⁡ ( 2 ) B\operatorname {Pin}(2) and various Thom spectra associated with it. To analyze these maps, we use the technique of cell diagrams, known results on the stable homotopy groups of spheres, and the j j -based Atiyah–Hirzebruch spectral sequence. 
    more » « less
  3. Abstract

    We study a family of invariants of compact metric spaces that combines the Curvature Sets defined by Gromov in the 1980 s with Vietoris–Rips Persistent Homology. For given integers$$k\ge 0$$k0and$$n\ge 1$$n1we consider the dimensionkVietoris–Rips persistence diagrams ofallsubsets of a given metric space with cardinality at mostn. We call these invariantspersistence setsand denote them as$${\textbf{D}}_{n,k}^{\textrm{VR}}$$Dn,kVR. We first point out that this family encompasses the usual Vietoris–Rips diagrams. We then establish that (1) for certain range of values of the parametersnandk, computing these invariants is significantly more efficient than computing the usual Vietoris–Rips persistence diagrams, (2) these invariants have very good discriminating power and, in many cases, capture information that is imperceptible through standard Vietoris–Rips persistence diagrams, and (3) they enjoy stability properties analogous to those of the usual Vietoris–Rips persistence diagrams. We precisely characterize some of them in the case of spheres and surfaces with constant curvature using a generalization of Ptolemy’s inequality. We also identify a rich family of metric graphs for which$${\textbf{D}}_{4,1}^{\textrm{VR}}$$D4,1VRfully recovers their homotopy type by studying split-metric decompositions. Along the way we prove some useful properties of Vietoris–Rips persistence diagrams using Mayer–Vietoris sequences. These yield a geometric algorithm for computing the Vietoris–Rips persistence diagram of a spaceXwith cardinality$$2k+2$$2k+2with quadratic time complexity as opposed to the much higher cost incurred by the usual algebraic algorithms relying on matrix reduction.

     
    more » « less
  4. We define the Chow t-structure on the ∞-category of motivic spectra SH(k) over an arbitrary base field k. We identify the heart of this t-structure SH(k)c♡ when the exponential characteristic of k is inverted. Restricting to the cellular subcategory, we identify the Chow heart SH(k)cell,c♡ as the category of even graded MU2∗MU-comodules. Furthermore, we show that the ∞-category of modules over the Chow truncated sphere spectrum 1c=0 is algebraic. Our results generalize the ones in Gheorghe–Wang–Xu in three aspects: to integral results; to all base fields other than just C; to the entire ∞-category of motivic spectra SH(k), rather than a subcategory containing only certain cellular objects. We also discuss a strategy for computing motivic stable homotopy groups of (p-completed) spheres over an arbitrary base field k using the Postnikov–Whitehead tower associated to the Chow t-structure and the motivic Adams spectral sequences over k. 
    more » « less
  5. Abstract For a subring $R$ of the rational numbers, we study $R$ -localization functors in the local homotopy theory of simplicial presheaves on a small site and then in ${\mathbb {A}}^1$ -homotopy theory. To this end, we introduce and analyze two notions of nilpotence for spaces in ${\mathbb {A}}^1$ -homotopy theory, paying attention to future applications for vector bundles. We show that $R$ -localization behaves in a controlled fashion for the nilpotent spaces we consider. We show that the classifying space $BGL_n$ is ${\mathbb {A}}^1$ -nilpotent when $n$ is odd, and analyze the (more complicated) situation where $n$ is even as well. We establish analogs of various classical results about rationalization in the context of ${\mathbb {A}}^1$ -homotopy theory: if $-1$ is a sum of squares in the base field, ${\mathbb {A}}^n \,{\setminus}\, 0$ is rationally equivalent to a suitable motivic Eilenberg–Mac Lane space, and the special linear group decomposes as a product of motivic spheres. 
    more » « less