In previous work [7], the authors constructed and studied a lift of the Galois correspondence to stable homotopy categories. In particular, if L/k is a finite Galois extension of fields with Galois group G, there is a functor c∗L/k : SHG → SHk from the G-equivariant stable homotopy category to the stable motivic homotopy category over k such that c∗L/k(G/H+) = Spec(LH)+. The main theorem of [7] says that when k is a real closed field and L = k[i], the restriction of c∗L/k to the η-complete subcategory is full and faithful. Here we “uncomplete” this theorem so that it applies to c∗L/k itself. Our main tools are Bachmann’s theorem on the (2,η)- periodic stable motivic homotopy category and an isomorphism range for the map πRS → πC2 S induced by C2-equivariant Betti realization.
more »
« less
The Chow t-structure on the ∞-category of motivic spectra
We define the Chow t-structure on the ∞-category of motivic spectra SH(k) over an arbitrary base field k. We identify the heart of this t-structure SH(k)c♡ when the exponential characteristic of k is inverted. Restricting to the cellular subcategory, we identify the Chow heart SH(k)cell,c♡ as the category of even graded MU2∗MU-comodules. Furthermore, we show that the ∞-category of modules over the Chow truncated sphere spectrum 1c=0 is algebraic. Our results generalize the ones in Gheorghe–Wang–Xu in three aspects: to integral results; to all base fields other than just C; to the entire ∞-category of motivic spectra SH(k), rather than a subcategory containing only certain cellular objects. We also discuss a strategy for computing motivic stable homotopy groups of (p-completed) spheres over an arbitrary base field k using the Postnikov–Whitehead tower associated to the Chow t-structure and the motivic Adams spectral sequences over k.
more »
« less
- Award ID(s):
- 1926686
- PAR ID:
- 10351971
- Date Published:
- Journal Name:
- Annals of mathematics
- ISSN:
- 1939-8980
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We compute the 2‐adic effective slice spectral sequence (ESSS) for the motivic stable homotopy groups of , a motivic analogue of the connective ‐local sphere over prime fields of characteristic not two. Together with the analogous computation over algebraically closed fields, this yields information about the motivic ‐local sphere over arbitrary base fields of characteristic not two. To compute the spectral sequence, we prove several results that may be of independent interest. We describe the ‐differentials in the slice spectral sequence in terms of the motivic Steenrod operations over general base fields, building on analogous results of Ananyevskiy, Röndigs, and Østvær for the very effective cover of Hermitian K‐theory. We also explicitly describe the coefficients of certain motivic Eilenberg–MacLane spectra and compute the ESSS for the very effective cover of Hermitian K‐theory over prime fields.more » « less
-
We show that the subcategory of mixed Tate motives in Voevodsky’s derived category of motives is not closed under infinite products. In fact, the infinite product $$\prod _{n=1}^{\infty }\mathbf{Q}(0)$$ is not mixed Tate. More generally, the inclusions of several subcategories of motives do not have left or right adjoints. The proofs use the failure of finite generation for Chow groups in various contexts. In the positive direction, we show that for any scheme of finite type over a field whose motive is mixed Tate, the Chow groups are finitely generated.more » « less
-
We identify the motivicKGL/2-local sphere as the fiber of\psi^{3}-1on(2,\eta)-completed HermitianK-theory, over any base scheme containing1/2. This is a motivic analogue of the classical resolution of theK(1)-local sphere, and extends to a description of theKGL/2-localization of an arbitrary motivic spectrum. Our proof relies on a novel conservativity argument that should be of broad utility in stable motivic homotopy theory.more » « less
-
Abstract We prove a general criterion that guarantees that an admissible subcategory of the derived category of an abelian category is equivalent to the bounded derived category of the heart of a bounded t‐structure. As a consequence, we show that has a strongly unique dg enhancement, applying the recent results of Canonaco, Neeman, and Stellari. We apply this criterion to the Kuznetsov component when is a cubic fourfold, a GM variety, or a quartic double solid. In particular, we obtain that these Kuznetsov components have strongly unique dg enhancement and that exact equivalences of the form are of Fourier–Mukai type when , belong to these classes of varieties, as predicted by a conjecture of Kuznetsov.more » « less
An official website of the United States government

