- Award ID(s):
- 1927130
- NSF-PAR ID:
- 10193271
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 491
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1832-1850
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)Metal-poor stars were formed during the early epochs when only massive stars had time to evolve and contribute to the chemical enrichment. Low-mass metal-poor stars survive until the present and provide fossil records of the nucleosynthesis of early massive stars. On the other hand, short-lived radionuclides (SLRs) in the early solar system (ESS) reflect the nucleosynthesis of sources that occurred close to the proto-solar cloud in both space and time. Both the ubiquity of Sr and Ba and the diversity of heavy-element abundance patterns observed in single metal-poor stars suggest that some neutron-capture mechanisms other than the r -process might have operated in early massive stars. Three such mechanisms are discussed: the weak s -process in non-rotating models with initial carbon enhancement, a new s -process induced by rapid rotation in models with normal initial composition, and neutron-capture processes induced by proton ingestion in non-rotating models. In addition, meteoritic data are discussed to constrain the core-collapse supernova (CCSN) that might have triggered the formation of the solar system and provided some of the SLRs in the ESS. If there was a CCSN trigger, the data point to a low-mass CCSN as the most likely candidate. An 11.8 M ⊙ CCSN trigger is discussed. Its nucleosynthesis, the evolution of its remnant, and the interaction of the remnant with the proto-solar cloud appear to satisfy the meteoritic constraints and can account for the abundances of the SLRs 41 Ca, 53 Mn, and 60 Fe in the ESS.more » « less
-
ABSTRACT Understanding the assembly of our Galaxy requires us to also characterize the systems that helped build it. In this work, we accomplish this by exploring the chemistry of accreted halo stars from Gaia-Enceladus/Gaia-Sausage (GES) selected in the infrared from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16. We use high resolution optical spectra for 62 GES stars to measure abundances in 20 elements spanning the α, Fe-peak, light, odd-Z, and notably, the neutron-capture groups of elements to understand their trends in the context of and in contrast to the Milky Way and other stellar populations. Using these derived abundances we find that the optical and the infrared abundances agree to within 0.15 dex except for O, Co, Na, Cu, and Ce. These stars have enhanced neutron-capture abundance trends compared to the Milky Way, and their [Eu/Mg] and neutron-capture abundance ratios (e.g. [Y/Eu], [Ba/Eu], [Zr/Ba], [La/Ba], and [Nd/Ba]) point to r-process enhancement and a delay in s-process enrichment. Their [α/Fe] trend is lower than the Milky Way trend for [Fe/H] > −1.5 dex, similar to previous studies of GES stars and consistent with the picture that these stars formed in a system with a lower rate of star formation. This is further supported by their depleted abundances in Ni, Na, and Cu abundances, again, similar to previous studies of low-α stars with accreted origins.
-
ABSTRACT The R Coronae Borealis (RCB) stars are extremely hydrogen-deficient carbon stars that produce large amounts of dust, causing sudden deep declines in brightness. They are believed to be formed primarily through white dwarf mergers. In this paper, we use mesa to investigate how post-merger objects with a range of initial He-burning shell temperatures from 2.1 to 5.4 × 108 K with solar and subsolar metallicities evolve into RCB stars. The most successful model of these has subsolar metallicity and an initial temperature near 3 × 108 K. We find a strong dependence on initial He-burning shell temperature for surface abundances of elements involved in the CNO cycle, as well as differences in effective temperature and radius of RCBs. Elements involved in nucleosynthesis present around 1 dex diminished surface abundances in the 10 per cent solar metallicity models, with the exception of carbon and lithium that are discussed in detail. Models with subsolar metallicities also exhibit longer lifetimes than their solar counterparts. Additionally, we find that convective mixing of the burned material occurs only in the first few years of post-merger evolution, after which the surface abundances are constant during and after the RCB phase, providing evidence for why these stars show a strong enhancement of partial He-burning products.more » « less
-
Abstract To understand the formation and evolution of the Milky Way disk, we must connect its current properties to its past. We explore hydrodynamical cosmological simulations to investigate how the chemical abundances of stars might be linked to their origins. Using hierarchical clustering of abundance measurements in two Milky Way–like simulations with distributed and steady star formation histories, we find that groups of chemically similar stars comprise different groups in birth place (
R birth) and time (age). Simulating observational abundance errors (0.05 dex), we find that to trace distinct groups of (R birth, age) requires a large vector of abundances. Using 15 element abundances (Fe, O, Mg, S, Si, C, P, Mn, Ne, Al, N, V, Ba, Cr, Co), up to ≈10 groups can be defined with ≈25% overlap in (R birth, age). We build a simple model to show that in the context of these simulations, it is possible to infer a star’s age andR birthfrom abundances with precisions of ±0.06 Gyr and ±1.17 kpc, respectively. We find that abundance clustering is ineffective for a third simulation, where low-α stars form distributed in the disk and early high-α stars form more rapidly in clumps that sink toward the Galactic center as their constituent stars evolve to enrich the interstellar medium. However, this formation path leads to large age dispersions across the [α /Fe]–[Fe/H] plane, which is inconsistent with the Milky Way’s observed properties. We conclude that abundance clustering is a promising approach toward charting the history of our Galaxy. -
ABSTRACT Classical barium stars are red giants that receive from their evolved binary companions material exposed to the slow neutron-capture nucleosynthesis, i.e. the s-process. Such a mechanism is expected to have taken place in the interiors of Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars. As post-interacting binaries, barium stars figure as powerful tracers of the s-process nucleosynthesis, evolution of binary systems, and mechanisms of mass transfer. The present study is the fourth in a series of high-resolution spectroscopic analyses on a sample of 180 barium stars, for which we report tungsten (W, Z = 74) abundances. The abundances were derived from synthetic spectrum computations of the W i absorption features at 4843.8 and 5224.7 Å. We were able to extract abundances for 94 stars; the measured [W/Fe] ratios range from ∼0.0 to 2.0 dex, increasing with decreasing metallicity. We noticed that in the plane [W/Fe] versus [s/Fe], barium stars follow the same trend observed in post-AGB stars. The observational data were also compared with predictions of the FRUITY and Monash AGB nucleosynthesis models. These expect values between −0.20 and +0.10 dex for the [W/hs] ratios, whereas a larger spread is observed in the program stars, with [W/hs] ranging from −0.40 to +0.60 dex. The stars with high [W/hs] ratios may represent evidence for the operation of the intermediate neuron-capture process at metallicities close to solar.