- Award ID(s):
- 1723440
- Publication Date:
- NSF-PAR ID:
- 10193690
- Journal Name:
- IEEE Frontiers in Education Conference (FIE)
- Page Range or eLocation-ID:
- 1 to 8
- Sponsoring Org:
- National Science Foundation
More Like this
-
Hands-on practice is a critical component of cybersecurity education. Most of the existing hands-on exercises or labs materials are usually managed in a problem-centric fashion, while it lacks a coherent way to manage existing labs and provide productive lab exercising plans for cybersecurity learners. With the advantages of big data and natural language processing (NLP) technologies, constructing a large knowledge graph and mining concepts from unstructured text becomes possible, which motivated us to construct a machine learning based lab exercising plan for cybersecurity education. In the research presented by this paper, we have constructed a knowledge graph in the cybersecurity domain using NLP technologies including machine learning based word embedding and hyperlink-based concept mining. We then utilized the knowledge graph during the regular learning process based on the following approaches: 1. We constructed a web-based front-end to visualize the knowledge graph, which allows students to browse and search cybersecurity-related concepts and the corresponding interdependence relations; 2. We created a personalized knowledge graph for each student based on their learning progress and status; 3.We built a personalized lab recommendation system by suggesting more relevant labs based on students’ past learning history to maximize their learning outcomes. To measure the effectiveness ofmore »
-
This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students.
-
Abstract Background With the increasing popularity of distance education, how to engage students in online inquiry‐based laboratories remains challenging for science teachers. Current remote labs mostly adopt a centralized model with limited flexibility left for teachers' just‐in‐time instruction based on students' real‐time science practices.
Objectives The goal of this research is to investigate the impact of a non‐centralized remote lab on students' cognitive and behavioural engagement.
Methods A mixed‐methods design was adopted. Participants were the high school students enrolled in two virtual chemistry classes. Remote labs 2.0, branded as Telelab, supports a non‐centralized model of remote inquiry that can enact more interactive hands‐on labs anywhere, anytime. Teleinquiry Instructional Model was used to guide the curriculum design. Students' clickstreams logs and instruction timestamps were analysed and visualized. Multiple regression analysis was used to determine whether engagement levels influence their conceptual learning. Behavioural engagement patterns were corroborated with survey responses.
Results and Conclusions We found approximate synchronizations between student–teacher–lab interactions in the heatmap. The guided inquiry enabled by Telelab facilitates real‐time communications between instructors and students. Students' conceptual learning is found to be impacted by varying engagement levels. Students' behavioural engagement patterns can be visualized and fed to instructors to inform learning progress and enact just‐in‐timemore »
Implications Telelab offers a model of remote labs 2.0 that can be easily customized to live stream hands‐on teleinquiry. It enhances engagement and gives participants a sense of telepresence. Providing a customizable teleinquiry curriculum for practitioners may better prepare them to teach inquiry‐based laboratories online.
-
A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment. VR provides the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms. The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for themore »
-
The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-to-face environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited tomore »