skip to main content


Title: streamingRPHash: Random Projection Clustering of High-Dimensional Data in a MapReduce Framework
The size and amount of data captured from numerous sources has created a situation where the large quantity of data challenges our ability to understand the meaning within the data. This has motivated studies for mechanized data analysis and in particular for the clustering, or partitioning, of data into related groups. In fact, the size of the data has grown to the point where it is now often necessary to stream the data through the system for online and high speed analysis. This paper explores the application of approximate methods for the stream clustering of high-dimensional data (feature sizes contains 100+ measures). In particular, the algorithm that has been developed, called streamingRPHash, combines Random Projection with Locality Sensitive Hashing and a count-min sketch to implement a high-performance method for the parallel and distributed clustering of streaming data in a MapReduce framework. streamingRPHash is able to perform clustering at a rate much faster than traditional clustering algorithms such as K-Means. streamingRPHash provides clustering results that are only slightly less accurate than K-Means, but in runtimes that are nearly half that required by K-Means. The performance advantage for streamingRPHash becomes even more significant as the dimensionality of the input data stream increases. Furthermore, the experimental results show that streamingRPHash has a near linear speedup relative to the number of CPU cores. This speedup efficiency is possible because the approximate methods used in streamingRPHash allow independent and largely unsynchronized analyses to be performed on each streamed data vectors.  more » « less
Award ID(s):
1440420
PAR ID:
10193708
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Cluster 2016
Page Range / eLocation ID:
168 to 169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Clustering continues to be an important tool for data engineering and analysis. While advances in deep learning tend to be at the forefront of machine learning, it is only useful for the supervised classification of data sets. Clustering is an essential tool for problems where labeling data sets is either too labor intensive or where there is no agreed upon ground truth. The well studied k-means problem partitions groups of similar vectors into k clusters by iteratively updating the cluster assignment such that it minimizes the within cluster sum of squares metric. Unfortunately k-means can become prohibitive for very large high dimensional data sets as iterative methods often rely on random access to, or multiple passes over, the data set — a requirement that is not often possible for large and potentially unbounded data sets. In this work we explore an randomized, approximate method for clustering called Tree-Walk Random Projection Clustering (TWRP) that is a fast, memory efficient method for finding cluster embedding in high dimensional spaces. TWRP combines random projection with a tree based partitioner to achieve a clustering method that forgoes storing the exhaustive representation of all vectors in the data space and instead performs a bounded search over the implied cluster bifurcation tree represented as approximate vector and count values. The TWRP algorithm is described and experimentally evaluated for scalability and accuracy in the presence of noise against several other well-known algorithms. 
    more » « less
  2. Abstract

    We study a sketch-and-solve approach to speed up the Peng–Wei semidefinite relaxation of $k$-means clustering. When the data are appropriately separated we identify the $k$-means optimal clustering. Otherwise, our approach provides a high-confidence lower bound on the optimal $k$-means value. This lower bound is data-driven; it does not make any assumption on the data nor how they are generated. We provide code and an extensive set of numerical experiments where we use this approach to certify approximate optimality of clustering solutions obtained by k-means++.

     
    more » « less
  3. null (Ed.)
    Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging. 
    more » « less
  4. Hierarchical clustering is a fundamental tool in data mining, machine learning and statistics. Popular hierarchical clustering algorithms include top-down divisive approaches such as bisecting k-means, k-median, and k-center and bottom-up agglomerative approaches such as single- linkage, average-linkage, and centroid-linkage. Unfortunately, only a few scalable hierarchical clustering algorithms are known, mostly based on the single-linkage algorithm. So, as datasets increase in size every day, there is a pressing need to scale other popular methods. We introduce efficient distributed algorithms for bisecting k-means, k- median, and k-center as well as centroid-linkage. In particular, we first formalize a notion of closeness for a hierarchical clustering algorithm, and then we use this notion to design new scalable distributed methods with strong worst case bounds on the running time and the quality of the solutions. Finally, we show experimentally that the introduced algorithms are efficient and close to their sequential variants in practice. 
    more » « less
  5. This paper introduces a new parallel clustering algorithm, named Feel-the-Way clustering algorithm, that provides better or equivalent convergence rate than the traditional clustering methods by optimizing the synchronization and communication costs. Our algorithm design centers on how to optimize three factors simultaneously: reduced synchronizations, improved convergence rate, and retained same or comparable optimization cost. To compare the optimization cost, we use the Sum of Square Error (SSE) cost as the metric, which is the sum of the square distance between each data point and its assigned clusters. Compared with the traditional MPI k-means algorithm, the new Feel-the-Way algorithm requires less communications among participating processes. As for the convergence rate, the new algorithm requires fewer number of iterations to converge. As for the optimization cost, it obtains the SSE costs that are close to the k-means algorithm. In the paper, we first design the full-step Feel-the-Way k-means clustering algorithm that can significantly reduce the number of iterations that are required by the original k-means clustering method. Next, we improve the performance of the full-step algorithm by adopting an optimized sampling-based approach, named reassignment-history-aware sampling. Our experimental results show that the optimized sampling-based Feel-the-Way method is significantly faster than the widely used k-means clustering method, and can provide comparable optimization costs. More extensive experiments with several synthetic datasets and real-world datasets (e.g., MNIST, CIFAR-10, ENRON, and PLACES-2) show that the new parallel algorithm can outperform the open source MPI k-means library by up to 110% on a high-performance computing system using 4,096 CPU cores. In addition, the new algorithm can take up to 51% fewer iterations to converge than the k-means clustering algorithm.

     
    more » « less