- PAR ID:
- 10298626
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 10
- Issue:
- 14
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 1690
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Recent work has proposed and explored using coreset techniques for quantum algorithms that operate on classical data sets to accelerate the applicability of these algorithms on near-term quantum devices. We apply these ideas to Quantum Boltzmann Machines (QBM) where gradient-based steps which require Gibbs state sampling are the main computational bottle-neck during training. By using a coreset in place of the full data set, we try to minimize the number of steps needed and accelerate the overall training time. In a regime where computational time on quantum computers is a precious resource, we propose this might lead to substantial practical savings. We evaluate this approach on 6x6 binary images from an augmented bars and stripes data set using a QBM with 36 visible units and 8 hidden units. Using an Inception score inspired metric, we compare QBM training times with and without using coresets.more » « less
-
Abstract The SAT problem is a prototypical NP-complete problem of fundamental importance in computational complexity theory with many applications in science and engineering; as such, it has long served as an essential benchmark for classical and quantum algorithms. This study shows numerical evidence for a quadratic speedup of the Grover Quantum Approximate Optimization Algorithm (G-QAOA) over random sampling for finding all solutions to 3-SAT (All-SAT) and Max-SAT problems. G-QAOA is less resource-intensive and more adaptable for these problems than Grover’s algorithm, and it surpasses conventional QAOA in its ability to sample all solutions. We show these benefits by classical simulations of many-round G-QAOA on thousands of random 3-SAT instances. We also observe G-QAOA advantages on the IonQ Aria quantum computer for small instances, finding that current hardware suffices to determine and sample all solutions. Interestingly, a single-angle-pair constraint that uses the same pair of angles at each G-QAOA round greatly reduces the classical computational overhead of optimizing the G-QAOA angles while preserving its quadratic speedup. We also find parameter clustering of the angles. The single-angle-pair protocol and parameter clustering significantly reduce obstacles to classical optimization of the G-QAOA angles.
-
Clustering continues to be an important tool for data engineering and analysis. While advances in deep learning tend to be at the forefront of machine learning, it is only useful for the supervised classification of data sets. Clustering is an essential tool for problems where labeling data sets is either too labor intensive or where there is no agreed upon ground truth. The well studied k-means problem partitions groups of similar vectors into k clusters by iteratively updating the cluster assignment such that it minimizes the within cluster sum of squares metric. Unfortunately k-means can become prohibitive for very large high dimensional data sets as iterative methods often rely on random access to, or multiple passes over, the data set — a requirement that is not often possible for large and potentially unbounded data sets. In this work we explore an randomized, approximate method for clustering called Tree-Walk Random Projection Clustering (TWRP) that is a fast, memory efficient method for finding cluster embedding in high dimensional spaces. TWRP combines random projection with a tree based partitioner to achieve a clustering method that forgoes storing the exhaustive representation of all vectors in the data space and instead performs a bounded search over the implied cluster bifurcation tree represented as approximate vector and count values. The TWRP algorithm is described and experimentally evaluated for scalability and accuracy in the presence of noise against several other well-known algorithms.more » « less
-
Abstract Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with near-term quantum computers. As there are no algorithmic guarantee possible for QAOA to outperform classical computers, without a proof that bounded-error quantum polynomial time (BQP) ≠ nondeterministic polynomial time (NP), it is necessary to investigate the empirical advantages of QAOA. We identify a computational phase transition of QAOA when solving hard problems such as SAT—random instances are most difficult to train at a critical problem density. We connect the transition to the controllability and the complexity of QAOA circuits. Moreover, we find that the critical problem density in general deviates from the SAT-UNSAT phase transition, where the hardest instances for classical algorithms lies. Then, we show that the high problem density region, which limits QAOA’s performance in hard optimization problems (reachability deficits), is actually a good place to utilize QAOA: its approximation ratio has a much slower decay with the problem density, compared to classical approximate algorithms. Indeed, it is exactly in this region that quantum advantages of QAOA over classical approximate algorithms can be identified.
-
Quantum algorithms for tasks such as factorization, search, and simulation rely on control flow such as branching and iteration that depends on the value of data in superposition. High-level programming abstractions for control flow, such as switches, loops, higher-order functions, and continuations, are ubiquitous in classical languages. By contrast, many quantum languages do not provide high-level abstractions for control flow in superposition, and instead require the use of hardware-level logic gates to implement such control flow.
The reason for this gap is that whereas a classical computer supports control flow abstractions using a program counter that can depend on data, the typical architecture of a quantum computer does not analogously provide a program counter that can depend on data in superposition. As a result, the complete set of control flow abstractions that can be correctly realized on a quantum computer has not yet been established.
In this work, we provide a complete characterization of the properties of control flow abstractions that are correctly realizable on a quantum computer. First, we prove that even on a quantum computer whose program counter exists in superposition, one cannot correctly realize control flow in quantum algorithms by lifting the classical conditional jump instruction to work in superposition. This theorem denies the ability to directly lift general abstractions for control flow such as the λ-calculus from classical to quantum programming.
In response, we present the necessary and sufficient conditions for control flow to be correctly realizable on a quantum computer. We introduce the quantum control machine, an instruction set architecture featuring a conditional jump that is restricted to satisfy these conditions. We show how this design enables a developer to correctly express control flow in quantum algorithms using a program counter in place of logic gates.