skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Enhanced Deep Convolutional Model for Spatiotemporal Image Fusion
Earth observation data with high spatiotemporal resolution are critical for dynamic monitoring and prediction in geoscience applications, however, due to some technique and budget limitations, it is not easy to acquire satellite images with both high spatial and high temporal resolutions. Spatiotemporal image fusion techniques provide a feasible and economical solution for generating dense-time data with high spatial resolution, pushing the limits of current satellite observation systems. Among existing various fusion algorithms, deeplearningbased models reveal a promising prospect with higher accuracy and robustness. This paper refined and improved the existing deep convolutional spatiotemporal fusion network (DCSTFN) to further boost model prediction accuracy and enhance image quality. The contributions of this paper are twofold. First, the fusion result is improved considerably with brand-new network architecture and a novel compound loss function. Experiments conducted in two different areas demonstrate these improvements by comparing them with existing algorithms. The enhanced DCSTFN model shows superior performance with higher accuracy, vision quality, and robustness. Second, the advantages and disadvantages of existing deeplearningbased spatiotemporal fusion models are comparatively discussed and a network design guide for spatiotemporal fusion is provided as a reference for future research. Those comparisons and guidelines are summarized based on numbers of actual experiments and have promising potentials to be applied for other image sources with customized spatiotemporal fusion networks.  more » « less
Award ID(s):
1739705
PAR ID:
10193718
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
11
Issue:
24
ISSN:
2072-4292
Page Range / eLocation ID:
2898
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dense time-series remote sensing data with detailed spatial information are highly desired for the monitoring of dynamic earth systems. Due to the sensor tradeoff, most remote sensing systems cannot provide images with both high spatial and temporal resolutions. Spatiotemporal image fusion models provide a feasible solution to generate such a type of satellite imagery, yet existing fusion methods are limited in predicting rapid and/or transient phenological changes. Additionally, a systematic approach to assessing and understanding how varying levels of temporal phenological changes affect fusion results is lacking in spatiotemporal fusion research. The objective of this study is to develop an innovative hybrid deep learning model that can effectively and robustly fuse the satellite imagery of various spatial and temporal resolutions. The proposed model integrates two types of network models: super-resolution convolutional neural network (SRCNN) and long short-term memory (LSTM). SRCNN can enhance the coarse images by restoring degraded spatial details, while LSTM can learn and extract the temporal changing patterns from the time-series images. To systematically assess the effects of varying levels of phenological changes, we identify image phenological transition dates and design three temporal phenological change scenarios representing rapid, moderate, and minimal phenological changes. The hybrid deep learning model, alongside three benchmark fusion models, is assessed in different scenarios of phenological changes. Results indicate the hybrid deep learning model yields significantly better results when rapid or moderate phenological changes are present. It holds great potential in generating high-quality time-series datasets of both high spatial and temporal resolutions, which can further benefit terrestrial system dynamic studies. The innovative approach to understanding phenological changes’ effect will help us better comprehend the strengths and weaknesses of current and future fusion models. 
    more » « less
  2. Messinger, David W.; Velez-Reyes, Miguel (Ed.)
    Recently, multispectral and hyperspectral data fusion models based on deep learning have been proposed to generate images with a high spatial and spectral resolution. The general objective is to obtain images that improve spatial resolution while preserving high spectral content. In this work, two deep learning data fusion techniques are characterized in terms of classification accuracy. These methods fuse a high spatial resolution multispectral image with a lower spatial resolution hyperspectral image to generate a high spatial-spectral hyperspectral image. The first model is based on a multi-scale long short-term memory (LSTM) network. The LSTM approach performs the fusion using a multiple step process that transitions from low to high spatial resolution using an intermediate step capable of reducing spatial information loss while preserving spectral content. The second fusion model is based on a convolutional neural network (CNN) data fusion approach. We present fused images using four multi-source datasets with different spatial and spectral resolutions. Both models provide fused images with increased spatial resolution from 8m to 1m. The obtained fused images using the two models are evaluated in terms of classification accuracy on several classifiers: Minimum Distance, Support Vector Machines, Class-Dependent Sparse Representation and CNN classification. The classification results show better performance in both overall and average accuracy for the images generated with the multi-scale LSTM fusion over the CNN fusion 
    more » « less
  3. Urban and environmental researchers seek to obtain building features (e.g., building shapes, counts, and areas) at large scales. However, blurriness, occlusions, and noise from prevailing satellite images severely hinder the performance of image segmentation, super-resolution, or deep-learning-based translation networks. In this article, we combine globally available satellite images and spatial geometric feature datasets to create a generative modeling framework that enables obtaining significantly improved accuracy in per-building feature estimation and the generation of visually plausible building footprints. Our approach is a novel design that compensates for the degradation present in satellite images by using a novel deep network setup that includes segmentation, generative modeling, and adversarial learning for instance-level building features. Our method has proven its robustness through large-scale prototypical experiments covering heterogeneous scenarios from dense urban to sparse rural. Results show better quality over advanced segmentation networks for urban and environmental planning, and show promise for future continental-scale urban applications. 
    more » « less
  4. Abstract Due to climate change and rapid urbanization, Urban Heat Island (UHI), featuring significantly higher temperature in metropolitan areas than surrounding areas, has caused negative impacts on urban communities. Temporal granularity is often limited in UHI studies based on satellite remote sensing data that typically has multi-day frequency coverage of a particular urban area. This low temporal frequency has restricted the development of models for predicting UHI. To resolve this limitation, this study has developed a cyber-based geographic information science and systems (cyberGIS) framework encompassing multiple machine learning models for predicting UHI with high-frequency urban sensor network data combined with remote sensing data focused on Chicago, Illinois, from 2018 to 2020. Enabled by rapid advances in urban sensor network technologies and high-performance computing, this framework is designed to predict UHI in Chicago with fine spatiotemporal granularity based on environmental data collected with the Array of Things (AoT) urban sensor network and Landsat-8 remote sensing imagery. Our computational experiments revealed that a random forest regression (RFR) model outperforms other models with the prediction accuracy of 0.45 degree Celsius in 2020 and 0.8 degree Celsius in 2018 and 2019 with mean absolute error as the evaluation metric. Humidity, distance to geographic center, and PM2.5concentration are identified as important factors contributing to the model performance. Furthermore, we estimate UHI in Chicago with 10-min temporal frequency and 1-km spatial resolution on the hottest day in 2018. It is demonstrated that the RFR model can accurately predict UHI at fine spatiotemporal scales with high-frequency urban sensor network data integrated with satellite remote sensing data. 
    more » « less
  5. Data fusion techniques have gained special interest in remote sensing due to the available capabilities to obtain measurements from the same scene using different instruments with varied resolution domains. In particular, multispectral (MS) and hyperspectral (HS) imaging fusion is used to generate high spatial and spectral images (HSEI). Deep learning data fusion models based on Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN) have been developed to achieve such task.In this work, we present a Multi-Level Propagation Learning Network (MLPLN) based on a LSTM model but that can be trained with variable data sizes in order achieve the fusion process. Moreover, the MLPLN provides an intrinsic data augmentation feature that reduces the required number of training samples. The proposed model generates a HSEI by fusing a high-spatial resolution MS image and a low spatial resolution HS image. The performance of the model is studied and compared to existing CNN and LSTM approaches by evaluating the quality of the fused image using the structural similarity metric (SSIM). The results show that an increase in the SSIM is still obtained while reducing of the number of training samples to train the MLPLN model. 
    more » « less