Due to climate change and rapid urbanization, Urban Heat Island (UHI), featuring significantly higher temperature in metropolitan areas than surrounding areas, has caused negative impacts on urban communities. Temporal granularity is often limited in UHI studies based on satellite remote sensing data that typically has multi-day frequency coverage of a particular urban area. This low temporal frequency has restricted the development of models for predicting UHI. To resolve this limitation, this study has developed a cyber-based geographic information science and systems (cyberGIS) framework encompassing multiple machine learning models for predicting UHI with high-frequency urban sensor network data combined with remote sensing data focused on Chicago, Illinois, from 2018 to 2020. Enabled by rapid advances in urban sensor network technologies and high-performance computing, this framework is designed to predict UHI in Chicago with fine spatiotemporal granularity based on environmental data collected with the Array of Things (AoT) urban sensor network and Landsat-8 remote sensing imagery. Our computational experiments revealed that a random forest regression (RFR) model outperforms other models with the prediction accuracy of 0.45 degree Celsius in 2020 and 0.8 degree Celsius in 2018 and 2019 with mean absolute error as the evaluation metric. Humidity, distance to geographic center, and PM2.5concentration more »
- Publication Date:
- NSF-PAR ID:
- 10370726
- Journal Name:
- Urban Informatics
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2731-6963
- Publisher:
- Springer Science + Business Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal,more »
-
High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air temperature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing models for mapping the variability in heat exposure in urban environments. We investigated an integrated approach for mapping urban heat hazards by harnessing a diverse set of high-resolution measurements, including both ground-based and satellite-based temperature data. We mounted vehicle-borne mobile sensors on city buses to collect high-frequency temperature data throughout 2018 and 2019. Our research also incorporated key biophysical parameters and Landsat 8 LST data into Random Forest regression modeling to map the hyperlocal variability of heat hazard over areas not covered by the buses. The vehicle-borne temperature sensor data showed large temperature differences within the city, with the largest variations of up to 10 °C and morning-afternoon diurnal changes at a magnitude around 20 °C. Random Forest modeling on noontime (11:30more »
-
Abstract The spatial distribution of population affects disease transmission, especially when shelter in place orders restrict mobility for a large fraction of the population. The spatial network structure of settlements therefore imposes a fundamental constraint on the spatial distribution of the population through which a communicable disease can spread. In this analysis we use the spatial network structure of lighted development as a proxy for the distribution of ambient population to compare the spatiotemporal evolution of COVID-19 confirmed cases in the USA and China. The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band sensor on the NASA/NOAA Suomi satellite has been imaging night light at ~ 700 m resolution globally since 2012. Comparisons with sub-kilometer resolution census observations in different countries across different levels of development indicate that night light luminance scales with population density over ~ 3 orders of magnitude. However, VIIRS’ constant ~ 700 m resolution can provide a more detailed representation of population distribution in peri-urban and rural areas where aggregated census blocks lack comparable spatial detail. By varying the low luminance threshold of VIIRS-derived night light, we depict spatial networks of lighted development of varying degrees of connectivity within which populations are distributed. The resulting size distributions of spatial network componentsmore »
-
Abstract The spatial distribution of population affects disease transmission, especially when shelter in place orders restrict mobility for a large fraction of the population. The spatial network structure of settlements therefore imposes a fundamental constraint on the spatial distribution of the population through which a communicable disease can spread. In this analysis we use the spatial network structure of lighted development as a proxy for the distribution of ambient population to compare the spatiotemporal evolution of COVID-19 confirmed cases in the USA and China. The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band sensor on the NASA/NOAA Suomi satellite has been imaging night light at ~ 700 m resolution globally since 2012. Comparisons with sub-kilometer resolution census observations in different countries across different levels of development indicate that night light luminance scales with population density over ~ 3 orders of magnitude. However, VIIRS’ constant ~ 700 m resolution can provide a more detailed representation of population distribution in peri-urban and rural areas where aggregated census blocks lack comparable spatial detail. By varying the low luminance threshold of VIIRS-derived night light, we depict spatial networks of lighted development of varying degrees of connectivity within which populations are distributed. The resulting size distributions of spatial network componentsmore »
-
Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have majormore »