skip to main content


Title: Workshop development for New frontier of mechatronics for mobility, energy, and production engineering
The emerging convergence research emphasizes integrating knowledge, methods, and expertise from different disciplines and forming novel frameworks to catalyze scientific discovery and innovation, not only multidisciplinary, but interdisciplinary and further transdisciplinary. Mechatronics matches this new trend of convergence engineering research for deep integration across disciplines such as mechanics, electronics, control theory, robotics, and production manufacturing, and is also inspired by its active means of addressing a specific challenge or opportunity for societal needs. The most current applications of mechatronics in automotive are e-mobility (electric vehicles, EV) and connected and autonomous vehicles (CAV); in manufacturing are robotics and smart-factory; and in aerospace are drones, unmanned aerial vehicle (UAV), and advanced avionics. The growing mechatronics industries demand high quality workforces with multidiscipline knowledge and training. These workforces can come from the graduates of colleges and universities with updated curricula, or from labors returning to schools or taking new training programs. Graduate schools can prepare higher level workforces that can carry out fundamental research and explore new technologies in mechatronics. K-12 schools will also play an important role in fostering the next-decade workforces for all the STEM area. On the other hand, the development of mechatronics technologies improves the tools for teaching mechatronics as well. These new teaching tools include affordable microcontrollers and the peripherals such as Arduinos, and Raspberry Pi, desktop 3D printers, and virtual reality (VR). In this paper we present the working processes and activities of a current one-year ECR project funded by NSF organizing two workshops held by two institutes for improving workforce development environments specified in mechatronics. Each workshop is planned to be two days, where the first day will be dedicated to the topics of the current workforce situation in industry, the current pathways for workforces, conventional college and university workforce training, and K-12 STEM education preparation in mechatronics. The topics in the second day will be slightly different based on the expertise and locations of the two institutes. One will focus on the mechatronics technologies in production engineering for alternative energy and ground mobility, and the other will concentrate on aerospace, alternative energy, and the corresponding applications. Both workshops will also address the current technical development of teaching methods and tools for mechatronics. VR will be specially emphasized and demonstrated in the workshops if the facilities allow. Social impacts of mechatronics technology, expansion of diversity and participation of underrepresented groups will be discussed in the workshops. We expect to have the results of the workshops to present in the annual ASEE conference in June.  more » « less
Award ID(s):
1935633
NSF-PAR ID:
10193728
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intelligent Autonomous Systems, including Intelligent Manufacturing & Automation and Industry 4.0, have immense potential to improve human health, safety, and welfare. Engineering these systems requires an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering throughout the design and development process. Mechatronics and Robotics Engineering (MRE) is emerging as a discipline that can provide the broad inter-disciplinary technical and professional skill sets that are critical to fulfill the research and development needs for these advanced systems. Despite experiencing tremendous, dynamic growth, MRE lacks a settled-on and agreed-upon body-of-knowledge, leading to unmet needs for standardized curricula, courses, laboratory platforms, and accreditation criteria, resulting in missed career opportunities for individuals and missed economic opportunities for industry. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted, especially in USA. To enable MRE to coalesce as a distinct and identifiable engineering field, the authors conducted four workshops on the Future of Mechatronics and Robotics Engineering (FoMRE) education at the bachelor’s degree level. The overall goal of the workshops was to improve the quality of undergraduate MRE education and to ease the adoption of teaching materials to prepare graduates with a blend of theoretical knowledge and practical hands-on skills. To realize this goal, the specific objectives were to generate enthusiasm and a sense of community among current and future MRE educators, promote diversity and inclusivity within the MRE community, identify thought leaders, and seek feedback from the community to serve as a foundation for future activities. The workshops were intended to benefit a wide range of participants including educators currently teaching or developing programs in MRE, PhD students seeking academic careers in MRE, and industry professionals desiring to shape the future workforce. Workshop activities included short presentations on sample MRE programs, breakout sessions on specific topics, and open discussion sessions. As a result of these workshops, the MRE educational community has been enlarged and engaged, with members actively contributing to the scholarship of teaching and learning. This paper presents the workshops’ formats, outcomes, results of participant surveys, and their analyses. A major outcome was identifying concept, skill, and experience inventories organized around the dimensions of foundational/practical/applications and student preparation/MRE knowledgebase. Particular attention is given to the extent to which the workshops realized the project goals, including attendee demographics, changes in participant attitudes, and development of the MRE community. The paper concludes with a summary of lessons learned and a call for future activities to shape the field. 
    more » « less
  2. Mechatronics and Robotics Engineering (MRE) is one of the engineering disciplines that is experiencing tremendous, dynamic growth. MRE professionals are shaping the world by designing smart systems and processes that will improve human welfare. One’s ability to meaningfully contribute to this field requires her/him to acquire an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering to oversee the entire design and development process of emerging MRE systems. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted. Now is the time for MRE to coalesce as a distinct and identifiable engineering discipline. To this end, and with support from the National Science Foundation, the authors have planned three workshops, the first of which has concluded, on the future of MRE education at the bachelor’s degree and postgraduate levels. The objectives of these workshops are to generate enthusiasm and inculcate a sense of community among current and future MRE educators; promote diversity and inclusivity within the community; seek feedback from the community to serve as a foundation for future activities; and identify thought leaders for future community activities. The workshops will benefit a wide range of participants including educators currently teaching in MRE; PhD students seeking academic careers in MRE; and industry professionals desiring to shape the future MRE workforce. These workshops will significantly contribute to the quality of MRE education and increase adoption to prepare individuals with a blend of theoretical knowledge and practical hands-on learning. Workshop activities include short presentations on sample MRE programs; breakout sessions on topics such as mechatronic and robotics knowledgebase, project-based learning, advanced and open-source platforms, reducing barriers to adoption, accreditation, preparation to teach MRE, and community-building; and open discussion and feedback. In this paper, the outcomes of the first workshop, results of the qualitative and quantitative surveys collected from the participants, and their analyses are presented. Particular attention is paid to attendee demographics, changes in participant attitudes, and development of the MRE community. 
    more » « less
  3. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing. 
    more » « less
  4. In September 2019, the fourth and final workshop on the Future of Mechatronics and Robotics Education (FoMRE) was held at a Lawrence Technological University in Southfield, MI. This workshop was organized by faculty at several universities with financial support from industry partners and the National Science Foundation. The purpose of the workshops was to create a cohesive effort among mechatronics and robotics courses, minors and degree programs. Mechatronics and Robotics Engineering (MRE) is an integration of mechanics, controls, electronics, and software, which provides a unique opportunity for engineering students to function on multidisciplinary teams. Due to its multidisciplinary nature, it attracts diverse and innovative students, and graduates better-prepared professional engineers. In this fast growing field, there is a great need to standardize educational material and make MRE education more widely available and easier to adopt. This can only be accomplished if the community comes together to speak with one clear voice about not only the benefits, but also the best ways to teach it. These efforts would also aid in establishing more of these degree programs and integrating minors or majors into existing computer science, mechanical engineering, or electrical engineering departments. The final workshop was attended by approximately 50 practitioners from industry and academia. Participants identified many practical skills required for students to succeed in an MRE curriculum and as practicing engineers after graduation. These skills were then organized into the following categories: professional, independent learning, controller design, numerical simulation and analysis, electronics, software development, and system design. For example, professional skills include technical reports, presentations, and documentation. Independent learning includes reading data sheets, performing internet searches, doing a literature review, and having a maker mindset. Numerical simulation skills include understanding data, presenting data graphically, solving and simulating in software such as MATLAB, Simulink and Excel. Controller design involves selecting a controller, tuning a controller, designing to meet specifications, and understanding when the results are good enough. Electronics skills include selecting sensors, interfacing sensors, interfacing actuators, creating printed circuit boards, wiring on a breadboard, soldering, installing drivers, using integrated circuits, and using microcontrollers. Software development of embedded systems includes agile program design, state machines, analyzing and evaluating code results, commenting code, troubleshooting, debugging, AI and machine learning. Finally, system design includes prototyping, creating CAD models, design for manufacturing, breaking a system down into subsystems, integrating and interfacing subcomponents, having a multidisciplinary perspective, robustness, evaluating tradeoffs, testing, validation, and verification, failure, effect, and mode analysis. A survey was prepared and sent out to the participants from all four workshops as well as other robotics faculty, researchers and industry personnel in order to elicit a broader community response. Because one of the biggest challenges in mechatronics and robotics education is the absence of standardized curricula, textbooks, platforms, syllabi, assignments, and learning outcomes, this was a vital part of the process to achieve some level of consensus. This paper presents an introduction to MRE education, related work on existing programs, methods, results of the practical skills survey, and then draws conclusions based upon these results. It aims to create the foundation for standardizing the development of student skills in mechatronics and robotics curricula across institutions, disciplines, majors and minors. The survey was completed by 94 participants and it was clear that there is a consensus that the primary skills students should have upon completion of MRE courses or a program is a broader multidisciplinary systems-level perspective, an ability to problem solve, and an ability to design a system to meet specifications. 
    more » « less
  5. With the nonstop advancements in Additive Manufacturing (AM), the American workforce needs technical training in several aspects of this leading-edge technology in its utilization and adaptability. The objective of the Additive Manufacturing Workforce Advancement Training Coalition and Hub (AM-WATCH) is to address current gaps in the knowledge base of 21st century professionals through the development of AM-WATCH educational materials tied to ABET Student Outcomes, delivery of professional development activities, and expanded outreach activities targeting K-12 and community college teachers and students. The project significantly enhances and expands the current resources developed by prior National Science Foundation projects (remote AM facilities, AM learning curriculum and educator workshops) to encompass hands-on desktop 3D printer-building modules, AM equipment operation/maintenance guidelines and additional remotely-accessible AM equipment laboratories. The project establishes a number of cutting edge AM innovations and targets to engage students in STEM and other technical careers while teaching them the latest AM trends and technologies. In short, this project brings many unique innovations to AM practices in teaching, learning, and training. 
    more » « less