Intelligent Autonomous Systems, including Intelligent Manufacturing & Automation and Industry 4.0, have immense potential to improve human health, safety, and welfare. Engineering these systems requires an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering throughout the design and development process. Mechatronics and Robotics Engineering (MRE) is emerging as a discipline that can provide the broad inter-disciplinary technical and professional skill sets that are critical to fulfill the research and development needs for these advanced systems. Despite experiencing tremendous, dynamic growth, MRE lacks a settled-on and agreed-upon body-of-knowledge, leading to unmet needs for standardized curricula, courses, laboratory platforms, andmore »
Workshop development for New frontier of mechatronics for mobility, energy, and production engineering
The emerging convergence research emphasizes integrating knowledge, methods, and expertise from different disciplines and forming novel frameworks to catalyze scientific discovery and innovation, not only multidisciplinary, but interdisciplinary and further transdisciplinary. Mechatronics matches this new trend of convergence engineering research for deep integration across disciplines such as mechanics, electronics, control theory, robotics, and production manufacturing, and is also inspired by its active means of addressing a specific challenge or opportunity for societal needs. The most current applications of mechatronics in automotive are e-mobility (electric vehicles, EV) and connected and autonomous vehicles (CAV); in manufacturing are robotics and smart-factory; and in aerospace are drones, unmanned aerial vehicle (UAV), and advanced avionics.
The growing mechatronics industries demand high quality workforces with multidiscipline knowledge and training. These workforces can come from the graduates of colleges and universities with updated curricula, or from labors returning to schools or taking new training programs. Graduate schools can prepare higher level workforces that can carry out fundamental research and explore new technologies in mechatronics. K-12 schools will also play an important role in fostering the next-decade workforces for all the STEM area. On the other hand, the development of mechatronics technologies improves the tools for teaching mechatronics more »
- Award ID(s):
- 1935633
- Publication Date:
- NSF-PAR ID:
- 10193728
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mechatronics and Robotics Engineering (MRE) is one of the engineering disciplines that is experiencing tremendous, dynamic growth. MRE professionals are shaping the world by designing smart systems and processes that will improve human welfare. One’s ability to meaningfully contribute to this field requires her/him to acquire an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering to oversee the entire design and development process of emerging MRE systems. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted. Now is the time for MRE tomore »
-
This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field canmore »
-
With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Sitemore »
-
With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Sitemore »