skip to main content


Title: Debris-bed friction during glacier sliding with ice–bed separation
Abstract Theory and experiments indicate that ice–bed separation during glacier slip over 2-D hard beds causes basal shear stress to reach a maximum at a particular slip velocity and decrease at higher velocities. We use the sliding theory of Lliboutry (1968) to explore how friction between debris particles in sliding ice and a rock bed affects this relationship between shear stress and slip velocity. Particle–bed contact forces and associated debris friction increase with increasing slip velocity, owing to increased rates of ice convergence with up-glacier facing surfaces. However, debris friction on diminished areas of the bed counteracts this effect as cavities grow. Thus, friction from debris alone increases only slightly with slip velocity, and for sediment particles larger than ~60 mm in diameter, debris friction peaks and decreases with increasing slip velocity. The effect on the sliding relationship is to steepen its rising limb and shift its shear stress peak to a slightly higher velocity. These results, which exclude the effect of debris friction on cavity size and debris concentrations above ~15%, indicate that the effect of debris in ice is to increase basal shear stress but not significantly change the form of the sliding relationship.  more » « less
Award ID(s):
1660972
NSF-PAR ID:
10194004
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annals of Glaciology
Volume:
60
Issue:
80
ISSN:
0260-3055
Page Range / eLocation ID:
30 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Observations of glacier slip over till beds, across a range of spatial and temporal scales, show abundant seismicity ranging from Mw∼−2 microearthquakes and tremor (submeter asperities and millisecond duration) to Mw∼7 slow-slip events (∼50  km rupture lengths and ∼30  min durations). A complete understanding of the mechanisms capable of producing seismic signals in these environments represents a strong constraint on bed conditions. In particular, there is a lack of experimental confirmation of velocity-weakening behavior of ice slipping on till, where friction decreases with increasing velocity—a necessity for nucleating seismic slip. To measure the frictional strength and stability of ice sliding against till, we performed a series of double-direct-shear experiments at controlled temperatures slightly above and below the ice melting point. Our results confirm velocity-strengthening ice–till slip at melting temperatures, as has been found in the few previous studies. We provide best-fit rate-and-state friction parameters and their standard deviations from averaging 13 experiments at equivalent conditions. We find evidence of similar velocity-strengthening behavior with 50% by volume debris-laden ice slid against till under the same conditions. In contrast, velocity-weakening and linear time-dependent healing of ice–till slip is present at temperatures slightly below the melting point, providing an experimentally supported mechanism for subglacial seismicity on soft-beds. The stability parameter (a−b) decreases with slip velocity, and evolution occurs over large (mm scale) displacements, suggesting that shear heating and melt buildup is responsible for the weakening. These measurements provide insight into subglacial stiffness in which seismicity of this type might be expected. We discuss glaciological circumstances pointing to potential field targets in which to test this frozen seismic asperity hypothesis. 
    more » « less
  2. Abstract

    Glacier sliding has major environmental consequences, but friction caused by debris in the basal ice of glaciers is seldom considered in sliding models. To include such friction, divergent hypotheses for clast‐bed contact forces require testing. In experiments we rotate an ice ring (outside diameter = 0.9 m), with and without isolated till clasts, over a smooth rock bed. Ice is kept at its pressure‐melting temperature, and meltwater drains along a film at the bed to atmospheric pressure at its edges. The ice pressure or bed‐normal component of ice velocity is controlled, while bed shear stress is measured. Results with debris‐free ice indicate friction coefficients < 0.01. Shear stresses caused by clasts in ice are independent of ice pressure. This independence indicates that with increases in ice pressure the water pressure in cavities observed beneath clasts increases commensurately to allow drainage of cavities into the melt film, leaving clast‐bed contact forces unaffected. Shear stresses, instead, are proportional to bed‐normal ice velocity. Cavities and the absence of regelation ice indicate that, unlike model formulations, regelation past clasts does not control contact forces. Alternatively, heat from the bed melts ice above clasts, creating pressure gradients in adjacent meltwater films that cause contact forces to depend on bed‐normal ice velocity. This model can account for observations if rock friction predicated on Hertzian clast‐bed contacts is assumed. Including debris‐bed friction in glacier sliding models will require coupling the ice velocity field near the bed to contact forces rather than imposing a pressure‐based friction rule.

     
    more » « less
  3. Abstract Recent seismic measurements from upper Thwaites Glacier indicate that the bed-type variability is closely related to the along-flow basal topography. In high-relief subglacial highlands, stoss sides of topographic highs have a relatively higher acoustic impedance (‘hard’ bed) with lower acoustic impedance (‘soft’ till) on lee sides. This pattern is similar to observations of many deglaciated terrains. Subglacial hydraulic-potential gradient and its divergence show a tendency for water to diverge over the stoss sides and converge into the lee sides. Convergence favors a thicker or more widespread water system, which can more efficiently decouple ice from the underlying till. Under such circumstances, till deformation does occur but, fluxes are relatively small. Till carried from the lee sides onto stoss sides of downstream bumps should couple to the ice more efficiently, increasing the ability for transport by till deformation. In turn, this suggests that steady-state till transport can be achieved if the stoss-side till layer is thin or discontinuous. In addition, the large basal shear stress generated in the highlands seems too high for a bed lubricated by a continuous although thin deforming till, suggesting till discontinuity, which would allow debris-laden ice to erode bedrock on stoss sides, supplying additional till for transport. 
    more » « less
  4. Abstract

    While analysis of glacial seismicity continues to be a widely used method for interpreting glacial processes, the underlying mechanics controlling glacial stick‐slip seismicity remain speculative. Here, we report on laboratory shear experiments of debris‐laden ice slid over a bedrock asperity under carefully controlled conditions. By modifying the elastic loading stiffness, we generated the first laboratory icequakes. Our work represents the first comprehensive lab observations of unstable ice‐slip events and replicates several seismological field observations of glacier slip, such as slip velocity, stress drop, and the relationship between stress drop and recurrence interval. We also observe that stick‐slips initiate above a critical driving velocity and that stress drop magnitude decreases with further increases in velocity, consistent with friction theory and rock‐on‐rock friction laboratory experiments. Our results demonstrate that glacier slip behavior can be accurately predicted by the constitutive rate‐and‐state friction laws that were developed for rock friction.

     
    more » « less
  5. Basal slip along glaciers and ice streams can be significantly modified by external time-dependent forcing, although it is not clear why some systems are more sensitive to tidal stresses. We have conducted a series of laboratory experiments to explore the effect of time varying load point velocity on ice-on-rock friction. Varying the load point velocity induces shear stress forcing, making this an analogous simulation of aspects of ice stream tidal modulation. Ambient pressure, double-direct shear experiments were conducted in a cryogenic servo-controlled biaxial deformation apparatus at temperatures between −2°C and −16°C. In addition to a background, median velocity (1 and 10 μm/s), a sinusoidal velocity was applied to the central sliding sample over a range of periods and amplitudes. Normal stress was held constant over each run (0.1, 0.5 or 1 MPa) and the shear stress was measured. Over the range of parameters studied, the full spectrum of slip behavior from creeping to slow-slip to stick-slip was observed, similar to the diversity of sliding styles observed in Antarctic and Greenland ice streams. Under conditions in which the amplitude of oscillation is equal to the median velocity, significant healing occurs as velocity approaches zero, causing a high-amplitude change in friction. The amplitude of the event increases with increasing period (i.e. hold time). At high normal stress, velocity oscillations force an otherwise stable system to behave unstably, with consistently-timed events during every cycle. Rate-state friction parameters determined from velocity steps show that the ice-rock interface is velocity strengthening. A companion paper describes a method of analyzing the oscillatory data directly. Forward modeling of a sinusoidally-driven slider block, using rate-and-state dependent friction formulation and experimentally derived parameters, successfully predicts the experimental output in all but a few cases. 
    more » « less