skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Virulence attenuating combination therapy: a potential multi-target synergy approach to treat Pseudomonas aeruginosa infections in cystic fibrosis patients
The World Health Organization considers the discovery of new treatments for P. aeruginosa a top priority. Virulence attenuating combination therapy (VACT) is a pragmatic strategy to improve bacterial clearance, repurpose outmoded antibiotics, improve drug efficacy at lower doses, and reduce the evolution of resistance. In vitro and in vivo studies have shown that adding a quorum sensing inhibitor or an extracellular polymeric substance repressor to classical antibiotics synergistically improves antipseudomonal activity. This review highlights why VACT could specifically benefit cystic fibrosis patients harboring chronic P. aeruginosa infections, outlines the current landscape of synergistic combinations between virulence-targeting small-molecules and anti-pseudomonal drugs, and suggests future directions for VACT research.  more » « less
Award ID(s):
1755698
PAR ID:
10194275
Author(s) / Creator(s):
;
Date Published:
Journal Name:
RSC Medicinal Chemistry
Volume:
11
Issue:
3
ISSN:
2632-8682
Page Range / eLocation ID:
358 to 369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Pseudomonas aeruginosa utilizes the quorum sensing (QS) system to strategically coordinate virulence and biofilm formation. Targeting QS pathways may be a potential anti-infective approach to treat P. aeruginosa infections. In the present study, we define cephalosporins’ anti-QS activity using Chromobacterium violaceum CV026 for screening and QS-regulated mutants of P. aeruginosa for validation. We quantified the effects of three cephalosporins, cefepime, ceftazidime, and ceftriaxone, on (1) pyocyanin production using spectrophotometric assay, (2) bacterial motility using agar plate assay, and (3) biofilm formation using scanning electron microscopy. We also studied isogenic QS mutant strains of PAO1 (Δ lasR ,Δ rhlR ,Δ pqsA , and Δ pqsR) to compare and distinguish QS-mediated effects on the motility phenotypes and bacterial growth with and without sub-MIC concentrations of antibiotics. Results showed that cephalosporins have anti-QS activity and reduce bacterial motility, pyocyanin production, and biofilm formation for CV026 and PAO1. Also, sub-MICs of cefepime increased aminoglycosides’ antimicrobial activity against P. aeruginosa PAO1, suggesting the advantage of combined anti-QS and antibacterial treatment. To correlate experimentally observed anti-QS effects with the interactions between cephalosporins and QS receptors, we performed molecular docking with ligand binding sites of quorum sensing receptors using Autodock Vina. Molecular docking predicted cephalosporins’ binding affinities to the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). To validate our results using an infection model, we quantified the survival rate of C aenorhabditis elegans following P. aeruginosa PAO1 challenge at concentrations less than the minimum inhibitory concentration (MIC) of antibiotics. C. elegans infected with PAO1 without antibiotics showed 0% survivability after 72 h. In contrast, PAO1-infected C. elegans showed 65 ± 5%, 58 ± 4%, and 49 ± 8% survivability after treatment with cefepime, ceftazidime, and ceftriaxone, respectively. We determined the survival rates of C. elegans infected by QS mutant strains Δ lasR (32 ± 11%), Δ rhlR (27 ± 8%), Δ pqsA (27 ± 10%), and Δ pqsR (37 ± 6%), which suggest essential role of QS system in virulence. In summary, cephalosporins at sub-MIC concentrations show anti-QS activity and enhance the antibacterial efficacy of aminoglycosides, a different class of antibiotics. Thus, cephalosporins at sub-MIC concentrations in combination with other antibiotics are potential candidates for developing therapies to combat infections caused by P. aeruginosa. 
    more » « less
  2. BackgroundPseudomonas aeruginosais a ubiquitous, opportunistic bacterium whose highly plastic genome and adaptable phenotype have yielded serious treatment challenges for immunocompromised patients. Antibiotic alternatives, such as anti-virulence therapeutics, have gained interest because they disable bacterial virulence mechanisms, thereby restoring the killing efficacy of host immunity or traditional antibiotics. Identifying successful anti-virulence therapeutics may require a paradigm shift from the decades-old antimicrobial susceptibility testing (AST) in Mueller Hinton broth to media that foster optimal virulence expression. MethodsThis study evaluates the virulence gene expression and activity ofP. aeruginosaPA14 in host-mimicking conditions, represented by Dulbecco’s Modified Eagle’s Medium (DMEM) without serum, with fetal bovine serum (FBS), or with human serum (HuS) in comparison to standard antimicrobial susceptibility testing conditions, represented by Cation-adjusted Mueller Hinton broth (CAMHB). PA14 twitching motility and pyoverdine production were evaluated under these conditions. ResultsFor the first time, our study reveals that culturing the highly virulentP. aeruginosaPA14 in host-mimicking media enhances the expression of multiple virulence therapeutic targets that are critical to host colonization and infection. RNA sequencing showed that multiple Type III Secretion (T3SS), Type I Secretion (T1SS), pyoverdine biosynthesis, uptake and efflux, and Type IV pili (T4P) initiation genes were promoted when PA14 was transitioned into host-mimicking conditions but remained unchanged when transitioned into standard AST conditions. Moreover, qPCR results disclosed that HuS and FBS delivered differential effects on the expression of membrane-associated virulence genes involved in host colonization. Our macroscopic PA14 twitching motility results aligned more closely with PA14 growth patterns than with virulence gene expression patterns. Our microtiter biofilm assay, however, revealed earlier biofilm formation in DMEM 0 than in AST conditions and both showed inhibited twitching motility in serum conditions. UV-Vis spectra showed that pyoverdine production aligned with our gene expression data, revealing higher pyoverdine production in serum conditions for planktonic PA14. DiscussionOverall, our findings support using host-mimicking conditions to improve the expression of candidate targets for anti-virulence therapeutics againstP. aeruginosaPA14 in a planktonic state. These recommendations may be broadly applicable for antivirulence therapeutic screening against multiple bacterial species at large. 
    more » « less
  3. Zhou, Ning-Yi (Ed.)
    ABSTRACT Pseudomonas aeruginosais considered one of the most challenging, drug-resistant, opportunistic pathogens partly due to its ability to synthesize robust biofilms. Biofilm is a mixture of extracellular polymeric substances (EPS) that encapsulates microbial cells, leading to immune evasion, antibiotic resistance, and thus higher risk of infection. In the cystic fibrosis lung environment,P. aeruginosaundergoes a mucoid transition, defined by overproduction of the exopolysaccharide alginate. Alginate encapsulation results in bacterial resistance to antibiotics and the host immune system. Given its role in airway inflammation and chronic infection, alginate is an obvious target to improve treatment forP. aeruginosainfection. Previously, we demonstrated polysaccharide lyase Smlt1473 fromStenotrophomonas maltophiliastrain k279a can catalyze the degradation of multiple polyuronidesin vitro, including D-mannuronic acid (poly-ManA). Poly-ManA is a major constituent ofP. aeruginosaalginate, suggesting that Smlt1473 could have potential application against multidrug-resistantP. aeruginosaand perhaps other microbes with related biofilm composition. In this study, we demonstrate that Smlt1473 can inhibit and degrade alginate fromP. aeruginosa. Additionally, we show that testedP. aeruginosastrains are dominant in acetylated alginate and that all but one have similar M-to-G ratios. These results indicate that variation in enzyme efficacy among the isolates is not primarily due to differences in total EPS or alginate chemical composition. Overall, these results demonstrate Smlt1473 can inhibit and degradeP. aeruginosaalginate and suggest that other factors including rate of EPS production, alginate sequence/chain length, or non-EPS components may explain differences in enzyme efficacy. IMPORTANCEPseudomonas aeruginosais a major opportunistic human pathogen in part due to its ability to synthesize biofilms that confer antibiotic resistance. Biofilm is a mixture of polysaccharides, DNA, and proteins that encapsulate cells, protecting them from antibiotics, disinfectants, and other cleaning agents. Due to its ability to increase antibiotic and immune resistance, the exopolysaccharide alginate plays a large role in airway inflammation and chronicP. aeruginosainfection. As a result, colonization withP. aeruginosais the leading cause of morbidity and mortality in CF patients. Thus, it is an obvious target to improve the treatment regimen forP. aeruginosainfection. In this study, we demonstrate that polysaccharide lyase, Smlt1473, inhibits alginate secretion and degrades established alginate from a variety of mucoidP. aeruginosaclinical isolates. Additionally, Smlt1473 differs from other alginate lyases in that it is active against acetylated alginate, which is secreted during chronic lung infection. These results suggest that Smlt1473 may be useful in treating infections associated with alginate-producingP. aeruginosa, as well as have the potential to reduceP. aeruginosaEPS in non-clinical settings. 
    more » « less
  4. LaRock, Christopher N. (Ed.)
    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes disease in immunocompromised individuals and individuals with underlying pulmonary disorders. P. aeruginosa virulence is controlled by quorum sensing (QS), a bacterial cell-cell communication mechanism that underpins transitions between individual and group behaviors. In P. aeruginosa , the PqsE enzyme and the QS receptor RhlR directly interact to control the expression of genes involved in virulence. Here, we show that three surface-exposed arginine residues on PqsE comprise the site required for interaction with RhlR. We show that a noninteracting PqsE variant [PqsE(NI)] possesses catalytic activity, but is incapable of promoting virulence phenotypes, indicating that interaction with RhlR, and not catalysis, drives these PqsE-dependent behaviors. Biochemical characterization of the PqsE-RhlR interaction coupled with RNA-seq analyses demonstrates that the PqsE-RhlR complex increases the affinity of RhlR for DNA, enabling enhanced expression of genes encoding key virulence factors. These findings provide the mechanism for PqsE-dependent regulation of RhlR and identify a unique regulatory feature of P. aeruginosa QS and its connection to virulence. IMPORTANCE Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of molecules called autoinducers (AI). QS is required for virulence in the human pathogen Pseudomonas aeruginosa , which can cause fatal infections in patients with underlying pulmonary disorders. In this study, we determine the molecular basis for the physical interaction between two virulence-driving QS components, PqsE and RhlR. We find that the ability of PqsE to bind RhlR correlates with virulence factor production. Since current antimicrobial therapies exacerbate the growing antibiotic resistance problem because they target bacterial growth, we suggest that the PqsE-RhlR interface discovered here represents a new candidate for targeting with small molecule inhibition. Therapeutics that disrupt the PqsE-RhlR interaction should suppress virulence. Targeting bacterial behaviors such as QS, rather than bacterial growth, represents an attractive alternative for exploration because such therapies could potentially minimize the development of resistance. 
    more » « less
  5. Bondy-Denomy, Joseph (Ed.)
    ABSTRACT Chemical communication between bacteria and between bacteria and the bacteriophage (phage) viruses that prey on them can shape the outcomes of phage-bacterial encounters. Quorum sensing (QS) is a bacterial cell-to-cell communication process that promotes collective undertaking of group behaviors. QS relies on the production, release, accumulation, and detection of signal molecules called autoinducers. Phages can exploit QS-mediated communication to manipulate their hosts and maximize their own survival. In the opportunistic pathogen Pseudomonas aeruginosa , the LasI/R QS system induces the RhlI/R QS system, and in opposing manners, these two systems control the QS system that relies on the autoinducer called PQS. A P. aeruginosa Δ lasI mutant is impaired in PQS synthesis, leading to accumulation of the precursor molecule HHQ, and HHQ suppresses growth of the P. aeruginosa Δ lasI strain. We show that, in response to a phage infection, the P. aeruginosa Δ lasI mutant reactivates QS, which, in turn, restores pqsH expression, enabling conversion of HHQ into PQS. Moreover, downstream QS target genes encoding virulence factors are induced. Additionally, phage-infected P. aeruginosa Δ lasI cells transiently exhibit superior growth compared to uninfected cells. IMPORTANCE Clinical isolates of P. aeruginosa frequently harbor mutations in particular QS genes. Here, we show that infection by select temperate phages restores QS, a cell-to-cell communication mechanism in a P. aeruginosa QS mutant. Restoration of QS increases expression of genes encoding virulence factors. Thus, phage infection of select P. aeruginosa strains may increase bacterial pathogenicity, underscoring the importance of characterizing phage-host interactions in the context of bacterial mutants that are relevant in clinical settings. 
    more » « less