skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Prediction Accuracy in Building Performance Models Using Generative Adversarial Networks (GANs)
Building performance discrepancies between building design and operation are one of the causes that lead many new designs fail to achieve their goals and objectives. A main factor contributing to the discrepancy is occupant behaviors. Occupants responding to a new design are influenced by several factors. Existing building performance models (BPMs) ignore or partially address those factors (called contextual factors) while developing BPMs. To potentially reduce the discrepancies and improve the prediction accuracy of BPMs, this paper proposes a computational framework for learning mixture models by using Generative Adversarial Networks (GANs) that appropriately combining existing BPMs with knowledge on occupant behaviors to contextual factors in new designs. Immersive virtual environments (IVEs) experiments are used to acquire data on such behaviors. Performance targets are used to guide appropriate combination of existing BPMs with knowledge on occupant behaviors. The resulting model obtained is called an augmented BPM. Two different experiments related to occupants lighting behaviors are shown as case study. The results reveal that augmented BPMs significantly outperformed existing BPMs with respect to achieving specified performance targets. The case study confirmed the potential of the computational framework for improving prediction accuracy of BPMs during design.  more » « less
Award ID(s):
1640818
PAR ID:
10194356
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Joint Conference on Neural Networks (IJCNN)
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building performance models (BPMs) are often used to estimate, analyze, and understand the performance of future or non-existing buildings during designs. However, performance gaps between prediction from BPMs and actual building still exist. Obviously, occupant behaviors are one of the major factors which cause the performance gaps because of several reasons, including (1) they are dynamic, (2) they are driven by many contextual factors, and (3) they are difficult to be captured by traditional experiments. This paper discusses a framework of applying generative adversarial networks (GANs) as an alternative approach to combine existing BPMs with occupant responses to design specific and context sensitive factors obtained from immersive virtual environment (IVE) toward designed buildings (target buildings) in order to reduce performance gaps between prediction during designs and actual buildings. 
    more » « less
  2. Abstract This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants’ schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting. 
    more » « less
  3. Occupant behavior has a significant impact on building systems’ operations and efficiency. As a result, several innovative approaches have been introduced to quantify the dynamics of occupants within indoor environments, such as interactions with different building systems and the impact of various feedback and interventions to reduce the building energy consumption. To achieve this, researchers have highlighted the importance of reducing energy consumption without impacting occupant comfort. As a result, there is an increasing body of research evaluating how different theories of behavior across a variety of disciplines can explain occupant interactions with building systems. Future progress in this area calls for an in-depth understanding of behavioral theories in explaining occupant interactions with different building systems. In this paper, we have used a structured literature review approach to investigate how different psychological, sociological, and economic theories have been applied to explain occupant interactions with heating and cooling (HVAC systems), opening windows and ventilation, lighting and shading, electronic appliances, domestic hot water, as well as energy conservation behaviors. Throughout the paper, we identify the most common theories and methodologies applied within the existing research, general findings related to how occupants interact with different building systems, as well as a number of identified gaps within the literature. Finally, we provide a discussion on directions for future research studies in this area under each building system. 
    more » « less
  4. Buildings consume nearly 40% of global energy and produce similar emissions. Whiletechnological advances address efficiency, occupant behavior causes energy use variations up to 300% between identical buildings. This gap between predicted and actual building performance impacts building design, operations, and grid demand management programs. Through analyses of smart thermostat data from 1,400 single-occupant homes, the researchdemonstrates that occupants respond to 8°F thermostat setpoint changes within a median of 15 minutes, while 2°F changes trigger responses within a median of 30 minutes. This highlights an understudied temporal relationship between thermostat setbacks and response time of occupant behaviors. Models of such behavior dynamics are required to incorporate occupant impacts into building performance simulation. A key contribution of this dissertation is the Thermal Frustration Theory (TFT), which positsthat thermal discomfort driven behaviors are caused by the time-accumulation of discomfort, not simply a temperature deviation threshold or a delay from an initiating event. Using a dataset of 634 thermostats, each with 25+ manual setpoint changes, a comparative analysis of TFT and comfort zone and a delayed response theories demonstrated that personalized TFT models better predict when manual setpoint change occur. This was measured by the area under the curve statistical measure (AUC); all three models perform similarly by a Matthews Correlation Coefficient measure. Higher AUC performance is especially important for modeling occupant behavior in demand response programs where false negatives of rare occupant interactions could adversely affect grid stability. EnergyPlus based simulations were conducted with TFT-derived occupant models, demonstrating the ability to identify parameters of known TFT models from only data observable with smart thermostats, even under the presence of noise from routine overrides. Overall, the dissertation highlights that thermostat interactions are neither static,instantaneous, nor driven solely by the environment. Instead, temporal accumulation of discomfort and routine-based behavior play important roles. The methodology and results offer a pathway towards more accurate modeling of human-building interactions for policy assessment, building design, and demand response programs. 
    more » « less
  5. Identification and quantitative understanding of factors that influence occupant energy behavior and thermal state during the design phase are critical in supporting effective energy-efficient design. To achieve this, immersive virtual environments (IVEs) have recently shown potential as a tool to simulate occupant energy behaviors and collect context-dependent behavior data for buildings under design. On the other hand, prior models of occupant energy behaviors and thermal states used correlation-based approaches, which failed to capture the underlying causal interactions between the influencing factors and hence were unable to uncover the true causing factors. Therefore, in this study, the authors investigate the applicability of causal inference for identifying the causing factors of occupant/participant energy behavioral intentions and their thermal states in IVE condition and compare those results with the baseline in-situ condition. The energy behavioral intentions here are a proximal antecedent of actual energy behaviors. A set of experiments involving 72 human subjects were performed through the use of a head-mounted device (HMD) in a climate chamber. The subjects were exposed to three different step temperatures (cool, neutral, warm) under an IVE and a baseline in-situ condition. Participants' individual factors, behavioral factors, skin temperatures, virtual experience factors, thermal states (sensation, acceptability, comfort), and energy behavioral intentions were collected during the experiments. Structural causal models were learnt from data using the elicitation method in conjunction with the PC-Stable algorithm. The findings show that the causal inference framework is a potentially effective method for identifying causing factors of thermal states and energy behavioral intentions as well as quantifying their causal effects. In addition, the study shows that in IVE experiments, the participants' virtual experience factors such as their immersion, presence, and cybersickness were not the causing factors of thermal states and energy behavioral intentions. Furthermore, the study suggests that participants' behavioral factors such as their attitudes toward energy conservation and perceived behavioral control to conserve energy were the causing factors of their energy behavioral intentions. Also, the indoor temperature was a causing factor of general thermal sensation and overall skin temperature. The paper also discusses other findings, including discrepancies, limitations of the study, and recommendations for future studies. 
    more » « less