skip to main content


Title: Variational Bayesian Quantization
We propose a novel algorithm for quantizing continuous latent representations in trained models. Our approach applies to deep probabilistic models, such as variational autoencoders (VAEs), and enables both data and model compression. Unlike current end-to-end neural compression methods that cater the model to a fixed quantization scheme, our algorithm separates model design and training from quantization. Consequently, our algorithm enables “plug-and-play” compression at variable rate-distortion trade-off, using a single trained model. Our algorithm can be seen as a novel extension of arithmetic coding to the continuous domain, and uses adaptive quantization accuracy based on estimates of posterior uncertainty. Our experimental results demonstrate the importance of taking into account posterior uncertainties, and show that image compression with the proposed algorithm outperforms JPEG over a wide range of bit rates using only a single standard VAE. Further experiments on Bayesian neural word embeddings demonstrate the versatility of the proposed method.  more » « less
Award ID(s):
1928718
NSF-PAR ID:
10194432
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 37 th International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel algorithm for quantizing continuous latent representations in trained models. Our approach applies to deep probabilistic models, such as variational autoencoders (VAEs), and enables both data and model compression. Unlike current end-to-end neural compression methods that cater the model to a fixed quantization scheme, our algorithm separates model design and training from quantization. Consequently, our algorithm enables “plug-and-play” compression with variable rate-distortion trade-off, using a single trained model. Our algorithm can be seen as a novel extension of arithmetic coding to the continuous domain, and uses adaptive quantization accuracy based on estimates of posterior uncertainty. Our experimental results demonstrate the importance of taking into account posterior uncertainties, and show that image compression with the proposed algorithm outperforms JPEG over a wide range of bit rates using only a single standard VAE. Further experiments on Bayesian neural word embeddings demonstrate the versatility of the proposed method. 
    more » « less
  2. Precise monitoring of respiratory rate in premature newborn infants is essential to initiating medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on the infant’s body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, deep learning model selection with hyperparameter tuning, model training and validation, and model testing and deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the energy limitations of wearable processing, several quantization techniques are explored, and their performance and energy consumption are analyzed for the respiratory classification task. Results demonstrate a reduction of energy footprints and model storage overhead with a considerable degradation of the classification accuracy, meaning that quantization and other model compression techniques are not the best solution for respiratory classification problem on wearable devices. To improve accuracy while reducing the energy consumption, we propose a novel spiking neural network (SNN)-based respiratory classification solution, which can be implemented on event-driven neuromorphic hardware platforms. To this end, we propose an approach to convert the analog operations of our baseline trained 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves an accuracy of 93.33% with 18x lower energy compared to the baseline 1DCNN model. Additionally, the proposed SNN solution achieves similar accuracy as the quantized model with a 4× lower energy. 
    more » « less
  3. Machine learning deployment on edge devices has faced challenges such as computational costs and privacy issues. Membership inference attack (MIA) refers to the attack where the adversary aims to infer whether a data sample belongs to the training set. In other words, user data privacy might be compromised by MIA from a well-trained model. Therefore, it is vital to have defense mechanisms in place to protect training data, especially in privacy-sensitive applications such as healthcare. This paper exploits the implications of quantization on privacy leakage and proposes a novel quantization method that enhances the resistance of a neural network against MIA. Recent studies have shown that model quantization leads to resistance against membership inference attacks. Existing quantization approaches primarily prioritize performance and energy efficiency; we propose a quantization framework with the main objective of boosting the resistance against membership inference attacks. Unlike conventional quantization methods whose primary objectives are compression or increased speed, our proposed quantization aims to provide defense against MIA. We evaluate the effectiveness of our methods on various popular benchmark datasets and model architectures. All popular evaluation metrics, including precision, recall, and F1-score, show improvement when compared to the full bitwidth model. For example, for ResNet on Cifar10, our experimental results show that our algorithm can reduce the attack accuracy of MIA by 14%, the true positive rate by 37%, and F1-score of members by 39% compared to the full bitwidth network. Here, reduction in true positive rate means the attacker will not be able to identify the training dataset members, which is the main goal of the MIA. 
    more » « less
  4. The enormous size of modern deep neural net-works makes it challenging to deploy those models in memory and communication limited scenarios. Thus, compressing a trained model without a significant loss in performance has become an increasingly important task. Tremendous advances has been made recently, where the main technical building blocks are pruning, quantization, and low-rank factorization. In this paper, we propose principled approaches to improve upon the common heuristics used in those building blocks, by studying the fundamental limit for model compression via the rate distortion theory. We prove a lower bound for the rate distortion function for model compression and prove its achievability for linear models. Although this achievable compression scheme is intractable in practice, this analysis motivates a novel objective function for model compression, which can be used to improve classes of model compressor such as pruning or quantization. Theoretically, we prove that the proposed scheme is optimal for compressing one-hidden-layer ReLU neural networks. Empirically,we show that the proposed scheme improves upon the baseline in the compression-accuracy tradeoff. 
    more » « less
  5. null (Ed.)
    Recently decentralized optimization attracts much attention in machine learning because it is more communication-efficient than the centralized fashion. Quantization is a promising method to reduce the communication cost via cutting down the budget of each single communication using the gradient compression. To further improve the communication efficiency, more recently, some quantized decentralized algorithms have been studied. However, the quantized decentralized algorithm for nonconvex constrained machine learning problems is still limited. Frank-Wolfe (a.k.a., conditional gradient or projection-free) method is very efficient to solve many constrained optimization tasks, such as low-rank or sparsity-constrained models training. In this paper, to fill the gap of decentralized quantized constrained optimization, we propose a novel communication-efficient Decentralized Quantized Stochastic Frank-Wolfe (DQSFW) algorithm for non-convex constrained learning models. We first design a new counterexample to show that the vanilla decentralized quantized stochastic Frank-Wolfe algorithm usually diverges. Thus, we propose DQSFW algorithm with the gradient tracking technique to guarantee the method will converge to the stationary point of non-convex optimization safely. In our theoretical analysis, we prove that to achieve the stationary point our DQSFW algorithm achieves the same gradient complexity as the standard stochastic Frank-Wolfe and centralized Frank-Wolfe algorithms, but has much less communication cost. Experiments on matrix completion and model compression applications demonstrate the efficiency of our new algorithm. 
    more » « less