skip to main content

This content will become publicly available on March 1, 2023

Title: Energy-Efficient Respiratory Anomaly Detection in Premature Newborn Infants
Precise monitoring of respiratory rate in premature newborn infants is essential to initiating medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on the infant’s body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, deep learning model selection with hyperparameter tuning, model training and validation, and model testing and deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the energy limitations of wearable processing, several quantization techniques are explored, and their performance and energy consumption are analyzed for the respiratory classification task. Results demonstrate a reduction of energy footprints and model storage overhead with a considerable degradation of the classification accuracy, meaning that quantization and other model compression techniques are not the best solution for respiratory classification problem on wearable devices. To improve accuracy while reducing the energy consumption, we propose a novel spiking neural network (SNN)-based respiratory classification solution, which can more » be implemented on event-driven neuromorphic hardware platforms. To this end, we propose an approach to convert the analog operations of our baseline trained 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves an accuracy of 93.33% with 18x lower energy compared to the baseline 1DCNN model. Additionally, the proposed SNN solution achieves similar accuracy as the quantized model with a 4× lower energy. « less
Authors:
; ; ; ;
Award ID(s):
1816387
Publication Date:
NSF-PAR ID:
10355688
Journal Name:
Electronics
Volume:
11
Issue:
5
Page Range or eLocation-ID:
682
ISSN:
2079-9292
Sponsoring Org:
National Science Foundation
More Like this
  1. Spiking Neural Networks (SNN) are fast emerging as an alternative option to Deep Neural Networks (DNN). They are computationally more powerful and provide higher energy-efficiency than DNNs. While exciting at first glance, SNNs contain security-sensitive assets (e.g., neuron threshold voltage) and vulnerabilities (e.g., sensitivity of classification accuracy to neuron threshold voltage change) that can be exploited by the adversaries. We explore global fault injection attacks using external power supply and laser-induced local power glitches on SNN designed using common analog neurons to corrupt critical training parameters such as spike amplitude and neuron’s membrane threshold potential. We also analyze the impact of power-based attacks on the SNN for digit classification task and observe a worst-case classification accuracy degradation of −85.65%. We explore the impact of various design parameters of SNN (e.g., learning rate, spike trace decay constant, and number of neurons) and identify design choices for robust implementation of SNN. We recover classification accuracy degradation by 30–47% for a subset of power-based attacks by modifying SNN training parameters such as learning rate, trace decay constant, and neurons per layer. We also propose hardware-level defenses, e.g., a robust current driver design that is immune to power-oriented attacks, improved circuit sizing of neuronmore »components to reduce/recover the adversarial accuracy degradation at the cost of negligible area, and 25% power overhead. We also propose a dummy neuron-based detection of voltage fault injection at ∼1% power and area overhead each.« less
  2. Spike train classification is an important problem in many areas such as healthcare and mobile sensing, where each spike train is a high-dimensional time series of binary values. Conventional re- search on spike train classification mainly focus on developing Spiking Neural Networks (SNNs) under resource-sufficient settings (e.g., on GPU servers). The neurons of the SNNs are usually densely connected in each layer. However, in many real-world applications, we often need to deploy the SNN models on resource-constrained platforms (e.g., mobile devices) to analyze high-dimensional spike train data. The high resource requirement of the densely-connected SNNs can make them hard to deploy on mobile devices. In this paper, we study the problem of energy-efficient SNNs with sparsely- connected neurons. We propose an SNN model with sparse spatiotemporal coding. Our solution is based on the re-parameterization of weights in an SNN and the application of sparsity regularization during optimization. We compare our work with the state-of-the-art SNNs and demonstrate that our sparse SNNs achieve significantly better computational efficiency on both neuromorphic and standard datasets with comparable classification accuracy. Furthermore, com- pared with densely-connected SNNs, we show that our method has a better capability of generalization on small-size datasets through extensive experiments.
  3. Spike train classification is an important problem in many areas such as healthcare and mobile sensing, where each spike train is a high-dimensional time series of binary values. Conventional re- search on spike train classification mainly focus on developing Spiking Neural Networks (SNNs) under resource-sufficient settings (e.g., on GPU servers). The neurons of the SNNs are usually densely connected in each layer. However, in many real-world applications, we often need to deploy the SNN models on resource-constrained platforms (e.g., mobile devices) to analyze high-dimensional spike train data. The high resource requirement of the densely-connected SNNs can make them hard to deploy on mobile devices. In this paper, we study the problem of energy-efficient SNNs with sparsely- connected neurons. We propose an SNN model with sparse spatio-temporal coding. Our solution is based on the re-parameterization of weights in an SNN and the application of sparsity regularization during optimization. We compare our work with the state-of-the-art SNNs and demonstrate that our sparse SNNs achieve significantly better computational efficiency on both neuromorphic and standard datasets with comparable classification accuracy. Furthermore, com- pared with densely-connected SNNs, we show that our method has a better capability of generalization on small-size datasets through extensive experiments.
  4. High-quality 3D image recognition is an important component of many vision and robotics systems. However, the accurate processing of these images requires the use of compute-expensive 3D Convolutional Neural Networks (CNNs). To address this challenge, we propose the use of Spiking Neural Networks (SNNs) that are generated from iso-architecture CNNs and trained with quantization-aware gradient descent to optimize their weights, membrane leak, and firing thresholds. During both training and inference, the analog pixel values of a 3D image are directly applied to the input layer of the SNN without the need to convert to a spike-train. This significantly reduces the training and inference latency and results in high degree of activation sparsity, which yields significant improvements in computational efficiency. However, this introduces energy-hungry digital multiplications in the first layer of our models, which we propose to mitigate using a processing-in-memory (PIM) architecture. To evaluate our proposal, we propose a 3D and a 3D/2D hybrid SNN-compatible convolutional architecture and choose hyperspectral imaging (HSI) as an application for 3D image recognition. We achieve overall test accuracy of 98.68, 99.50, and 97.95% with 5 time steps (inference latency) and 6-bit weight quantization on the Indian Pines, Pavia University, and Salinas Scene datasets, respectively.more »In particular, our models implemented using standard digital hardware achieved accuracies similar to state-of-the-art (SOTA) with ~560.6× and ~44.8× less average energy than an iso-architecture full-precision and 6-bit quantized CNN, respectively. Adopting the PIM architecture in the first layer, further improves the average energy, delay, and energy-delay-product (EDP) by 30, 7, and 38%, respectively.« less
  5. Spiking neural networks (SNNs) offer a promising biologically-plausible computing model and lend themselves to ultra-low-power event-driven processing on neuromorphic processors. Compared with the conventional artificial neural networks, SNNs are well-suited for processing complex spatiotemporal data. Despite its significance, dataflow optimization of spiking neural accelerator architectures has not been extensively studied. Recognizing the need for efficient processing of complex spatiotemporal data while considering the all-or-none nature of spiking activities, we propose holistic reconfigurable dataflow optimization for systolic array acceleration of spiking convolutional networks (S-CNNs). A novel scheme is introduced for parallel acceleration of computation across multiple time points, which further allows for systemic optimization of variable tiling for a large performance and efficiency gains. We show how variable tiling, in particular, the positioning of the temporal dimension, can be targeted to optimize data movement, throughput, and energy efficiency. Furthermore, we explore joint layer-dependent dataflow and accelerator hardware optimization to further boost performance and energy efficiency. To support systemic design space exploration, we develop an SNN dataflow simulator capable of analyzing the throughput and energy dissipation of systolic array accelerators for any targeted S-CNN while considering the inherent spatiotemporal characteristics of spiking neural computation. The proposed techniques deliver orders of magnitude ofmore »improvements on throughput, energy efficiency, and delay-energy product for accelerating deep Alexnet and VGG-16 SNNs.« less