This experimental, terrestrial study is part of a larger effort to dissipate increased heat fluxes through enhanced pool boiling in spacecraft electronics prior to an extensive study to be conducted on the International Space Station under pristine microgravity conditions. The absence of buoyancy forces in microgravity causes vapor bubbles to grow to a very large size, leading to premature critical heat flux (CHF). Using an engineered surface modification, namely an asymmetric sawtooth ratchet, to create mobility of the vapor mass can alleviate this problem. The stainless steel (SS 316L) test surfaces were fabricated using powder bed fusion, a metal additive manufacturing process. Vapor mobility was observed in the downward-facing configuration for the asymmetric sawtooth structure explored in the study. A thin liquid film was observed underneath the vapor bubbles as they slid along the microstructure. The asymmetric nature of this liquid film is explored using high-speed imaging at the crest and trough of the sawtooth. The proposed asymmetric saw-tooth microstructure is a potential technique to induce motion of vapor bubbles across electronic components when reduced buoyancy forces do not detach vapor bubbles from the surface.
more »
« less
Phase Change Cooling of Spacecraft Electronics: Terrestrial Reference Experiments Prior to ISS Microgravity Experiments
This experimental, terrestrial study is part of a larger effort to dissipate increased heat fluxes through enhanced pool boiling in spacecraft electronics prior to an extensive study to be conducted on the International Space Station under pristine microgravity conditions. The absence of buoyancy forces in microgravity causes vapor bubbles to grow to a very large size, leading to premature critical heat flux (CHF). Using an engineered surface modification, namely an asymmetric sawtooth ratchet, to create mobility of the vapor mass can alleviate this problem. The stainless steel (SS 316L) test surfaces were fabricated using powder bed fusion, a metal additive manufacturing process. Vapor mobility was observed in the downward-facing configuration for the asymmetric sawtooth structure explored in the study. A thin liquid film was observed underneath the vapor bubbles as they slid along the microstructure. The asymmetric nature of this liquid film is explored using high-speed imaging at the crest and trough of the sawtooth. The proposed asymmetric saw-tooth microstructure is a potential technique to induce motion of vapor bubbles across electronic components when reduced buoyancy forces do not detach vapor bubbles from the surface.
more »
« less
- Award ID(s):
- 1740506
- PAR ID:
- 10194544
- Date Published:
- Journal Name:
- 19th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, virtual, July 21-23, 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This short article describes the major findings from the CVB experiment performed in the LMM on the International Space Station from 2010–2012. CVB was the first experiment to run in the new facility and focused on understanding the heat transfer and fluid mechanics occurring inside a wickless miniature heat pipe. The LMM was used to map the location of the vapor-liquid interface inside the device and to measure the film thickness profile on the walls of the device. Several interesting and unexpected phenomena were observed in microgravity including flooding of the heater end with liquid as the heat input increased, explosive nucleation of vapor bubbles at the heater end in the shortest version of the heat pipe tested, condensation on highly superheated surfaces, and the spontaneous formation of rip currents as the device tried to enhance the contact line area available for evaporation of the liquid.more » « less
-
We present an experimental study of bubble coalescence at an air–water interface and characterize the evolution of both the underwater neck and the surface bridge. We explore a wide range of Bond number, $Bo$ , which compares gravity and capillary forces and is a dimensionless measure of the free surface's effect on bubble geometry. The nearly spherical $$Bo\ll 1$$ bubbles exhibit the same inertial–capillary growth of the classic underwater dynamics, with limited upper surface displacement. For $Bo>1$ , the bubbles are non-spherical – residing predominantly above the free surface – and, while an inertial–capillary scaling for the underwater neck growth is still observed, the controlling length scale is defined by the curvature of the bubbles near their contact region. With it, an inertial–capillary scaling collapses the neck contours across all Bond numbers to a universal shape. Finally, we characterize the upper surface with a simple oscillatory model which balances capillary forces and the inertia of liquid trapped at the centre of the liquid-film surface.more » « less
-
Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid–vapor phase change. Recent developments of liquid–vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid–vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.more » « less
-
The boiling efficacy is intrinsically tethered to trade-offs between the desire for bubble nucleation and necessity of vapor removal. The solution to these competing demands requires the separation of bubble activity and liquid delivery, often achieved through surface engineering. In this study, we independently engineer bubble nucleation and departure mechanisms through the design of heterogeneous and segmented nanowires with dual wettability with the aim of pushing the limit of structure-enhanced boiling heat transfer performances. The demonstration of separating liquid and vapor pathways outperforms state-of-the-art hierarchical nanowires, in particular, at low heat flux regimes while maintaining equal performances at high heat fluxes. A deep-learning based computer vision framework realized the autonomous curation and extraction of hidden big data along with digitalized bubbles. The combined efforts of materials design, deep learning techniques, and data-driven approach shed light on the mechanistic relationship between vapor/liquid pathways, bubble statistics, and phase change performance.more » « less
An official website of the United States government

