Discriminating between quantum states is a fundamental task in quantum information theory. Given two quantum states, ρ+ and ρ− , the Helstrom measurement distinguishes between them with minimal probability of error. However, finding and experimentally implementing the Helstrom measurement can be challenging for quantum states on many qubits. Due to this difficulty, there is a great interest in identifying local measurement schemes which are close to optimal. In the first part of this work, we generalize previous work by Acin et al. (Phys. Rev. A 71, 032338) and show that a locally greedy (LG) scheme using Bayesian updating can optimally distinguish between any two states that can be written as a tensor product of arbitrary pure states. We then show that the same algorithm cannot distinguish tensor products of mixed states with vanishing error probability (even in a large subsystem limit), and introduce a modified locally-greedy (MLG) scheme with strictly better performance. In the second part of this work, we compare these simple local schemes with a general dynamic programming (DP) approach. The DP approach finds the optimal series of local measurements and optimal order of subsystem measurement to distinguish between the two tensor-product states.
more »
« less
Reinforcement Learning with Neural Networks for Quantum Multiple Hypothesis Testing
Reinforcement learning with neural networks (RLNN) has recently demonstrated great promise for many problems, including some problems in quantum information theory. In this work, we apply reinforcement learning to quantum hypothesis testing, where one designs measurements that can distinguish between multiple quantum states while minimizing the error probability. Although the Helstrom measurement is known to be optimal when there are m=2 states, the general problem of finding a minimal-error measurement is challenging. Additionally, in the case where the candidate states correspond to a quantum system with many qubit subsystems, implementing the optimal measurement on the entire system may be impractical. In this work, we develop locally-adaptive measurement strategies that are experimentally feasible in the sense that only one quantum subsystem is measured in each round. RLNN is used to find the optimal measurement protocol for arbitrary sets of tensor product quantum states. Numerical results for the network performance are shown. In special cases, the neural network testing-policy achieves the same probability of success as the optimal collective measurement.
more »
« less
- PAR ID:
- 10194558
- Date Published:
- Journal Name:
- 2020 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 1897 to 1902
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantum computers in the current noisy intermediate-scale quantum (NISQ) era face two major limitations - size and error vulnerability. Although quantum error correction (QEC) methods exist, they are not applicable at the current size of computers, requiring thousands of qubits, while NISQ systems have nearly one hundred at most. One common approach to improve reliability is to adjust the compilation process to create a more reliable final circuit, where the two most critical compilation decisions are the qubit allocation and qubit routing problems. We focus on solving the qubit allocation problem and identifying initial layouts that result in a reduction of error. To identify these layouts, we combine reinforcement learning with a graph neural network (GNN)-based Q-network to process the mesh topology of the quantum computer, known as the backend, and make mapping decisions, creating a Graph Neural Network Assisted Quantum Compilation (GNAQC) strategy. We train the architecture using a set of four backends and six circuits and find that GNAQC improves output fidelity by roughly 12.7% over pre-existing allocation methods.more » « less
-
Abstract Quantum state discrimination is a central problem in quantum measurement theory, with applications spanning from quantum communication to computation. Typical measurement paradigms for state discrimination involve a minimum probability of error or unambiguous discrimination with a minimum probability of inconclusive results. Alternatively, an optimal inconclusive measurement, a non-projective measurement, achieves minimal error for a given inconclusive probability. This more general measurement encompasses the standard measurement paradigms for state discrimination and provides a much more powerful tool for quantum information and communication. Here, we experimentally demonstrate the optimal inconclusive measurement for the discrimination of binary coherent states using linear optics and single-photon detection. Our demonstration uses coherent displacement operations based on interference, single-photon detection, and fast feedback to prepare the optimal feedback policy for the optimal non-projective quantum measurement with high fidelity. This generalized measurement allows us to transition among standard measurement paradigms in an optimal way from minimum error to unambiguous measurements for binary coherent states. As a particular case, we use this general measurement to implement the optimal minimum error measurement for phase-coherent states, which is the optimal modulation for communications under the average power constraint. Moreover, we propose a hybrid measurement that leverages the binary optimal inconclusive measurement in conjunction with sequential, unambiguous state elimination to realize higher dimensional inconclusive measurements of coherent states.more » « less
-
The concept of antidistinguishability of quantum states has been studied to investigate foundational questions in quantum mechanics. It is also called quantum state elimination, because the goal of such a protocol is to guess which state, among finitely many chosen at random, the system is not prepared in (that is, it can be thought of as the first step in a process of elimination). Antidistinguishability has been used to investigate the reality of quantum states, ruling out ψ-epistemic ontological models of quantum mechanics (Pusey et al. in Nat Phys 8(6):475–478, 2012). Thus, due to the established importance of antidistinguishability in quantum mechanics, exploring it further is warranted. In this paper, we provide a comprehensive study of the optimal error exponent—the rate at which the optimal error probability vanishes to zero asymptotically—for classical and quantum antidistinguishability. We derive an exact expression for the optimal error exponent in the classical case and show that it is given by the multivariate classical Chernoff divergence. Our work thus provides this divergence with a meaningful operational interpretation as the optimal error exponent for antidistinguishing a set of probability measures. For the quantum case, we provide several bounds on the optimal error exponent: a lower bound given by the best pairwise Chernoff divergence of the states, a single-letter semi-definite programming upper bound, and lower and upper bounds in terms of minimal and maximal multivariate quantum Chernoff divergences. It remains an open problem to obtain an explicit expression for the optimal error exponent for quantum antidistinguishability.more » « less
-
The concept of antidistinguishability of quantum states has been studied to investigate foundational questions in quantum mechanics. It is also called quantum state elimination, because the goal of such a protocol is to guess which state, among finitely many chosen at random, the system is not prepared in (that is, it can be thought of as the first step in a process of elimination). Antidistinguishability has been used to investigate the reality of quantum states, ruling out psi-epistemic ontological models of quantum mechanics (Pusey et al. in Nat Phys 8(6):475–478, 2012). Thus, due to the established importance of antidistinguishability in quantum mechanics, exploring it further is warranted. In this paper, we provide a comprehensive study of the optimal error exponent—the rate at which the optimal error probability vanishes to zero asymptotically—for classical and quantum antidistinguishability. We derive an exact expression for the optimal error exponent in the classical case and show that it is given by the multivariate classical Chernoff divergence. Our work thus provides this divergence with a meaningful operational interpretation as the optimal error exponent for antidistinguishing a set of probability measures. For the quantum case, we provide several bounds on the optimal error exponent: a lower bound given by the best pairwise Chernoff divergence of the states, a single-letter semi-definite programming upper bound, and lower and upper bounds in terms of minimal and maximal multivariate quantum Chernoff divergences. It remains an open problem to obtain an explicit expression for the optimal error exponent for quantum antidistinguishability.more » « less
An official website of the United States government

