Reinforcement learning with neural networks (RLNN) has recently demonstrated great promise for many problems, including some problems in quantum information theory. In this work, we apply reinforcement learning to quantum hypothesis testing, where one designs measurements that can distinguish between multiple quantum states while minimizing the error probability. Although the Helstrom measurement is known to be optimal when there are m=2 states, the general problem of finding a minimal-error measurement is challenging. Additionally, in the case where the candidate states correspond to a quantum system with many qubit subsystems, implementing the optimal measurement on the entire system may be impractical. In this work, we develop locally-adaptive measurement strategies that are experimentally feasible in the sense that only one quantum subsystem is measured in each round. RLNN is used to find the optimal measurement protocol for arbitrary sets of tensor product quantum states. Numerical results for the network performance are shown. In special cases, the neural network testing-policy achieves the same probability of success as the optimal collective measurement.
more »
« less
Adaptive Procedures for Discriminating Between Arbitrary Tensor-Product Quantum States
Discriminating between quantum states is a fundamental task in quantum information theory. Given two quantum states, ρ+ and ρ− , the Helstrom measurement distinguishes between them with minimal probability of error. However, finding and experimentally implementing the Helstrom measurement can be challenging for quantum states on many qubits. Due to this difficulty, there is a great interest in identifying local measurement schemes which are close to optimal. In the first part of this work, we generalize previous work by Acin et al. (Phys. Rev. A 71, 032338) and show that a locally greedy (LG) scheme using Bayesian updating can optimally distinguish between any two states that can be written as a tensor product of arbitrary pure states. We then show that the same algorithm cannot distinguish tensor products of mixed states with vanishing error probability (even in a large subsystem limit), and introduce a modified locally-greedy (MLG) scheme with strictly better performance. In the second part of this work, we compare these simple local schemes with a general dynamic programming (DP) approach. The DP approach finds the optimal series of local measurements and optimal order of subsystem measurement to distinguish between the two tensor-product states.
more »
« less
- PAR ID:
- 10194559
- Date Published:
- Journal Name:
- 2020 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 1933 to 1938
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the (ρ,δ)-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state ρ and its distance δ to the ideal state ρ. This predicate (ρ,δ) can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the (ρ,δ)-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.more » « less
-
Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the (ρ,δ)-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state ρ and its distance δ to the ideal state ρ. This predicate (ρ,δ) can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the (ρ,δ)-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.more » « less
-
We study the problem of finding a (pure) product state with optimal fidelity to an unknown n-qubit quantum state ρ, given copies of ρ. This is a basic instance of a fundamental question in quantum learning: is it possible to efficiently learn a simple approximation to an arbitrary state? We give an algorithm which finds a product state with fidelity ε-close to optimal, using N=npoly(1/ε) copies of ρ and poly(N) classical overhead. We further show that estimating the optimal fidelity is NP-hard for error ε=1/poly(n), showing that the error dependence cannot be significantly improved. For our algorithm, we build a carefully-defined cover over candidate product states, qubit by qubit, and then demonstrate that extending the cover can be reduced to approximate constrained polynomial optimization. For our proof of hardness, we give a formal reduction from polynomial optimization to finding the closest product state. Together, these results demonstrate a fundamental connection between these two seemingly unrelated questions. Building on our general approach, we also develop more efficient algorithms in three simpler settings: when the optimal fidelity exceeds 5/6; when we restrict ourselves to a discrete class of product states; and when we are allowed to output a matrix product state.more » « less
-
We propose a method to build an astronomical interferometer using continuous-variable quantum teleportation to overcome transmission loss between distant telescopes. The scheme relies on two-mode squeezed states shared by distant telescopes as entanglement resources, which are distributed using continuous-variable quantum repeaters. We find the optimal measurement on the teleported states, which uses beam splitters and photon-number-resolved detection. Compared to prior proposals relying on discrete states, our scheme has the advantages of using linear optics to implement it without wasting stellar photons, and making use of multiphoton events, which are regarded as noise in previous discrete schemes. We also outline the parameter regimes in which our scheme outperforms the direct detection method, schemes utilizing distributed discrete-variable entangled states, and local heterodyne techniques.more » « less
An official website of the United States government

