skip to main content


Title: Collision-Free Distributed Multi-Target Tracking Using Teams of Mobile Robot with Localization Uncertainty
Accurately tracking dynamic targets relies on robots accounting for uncertainties in their own states to share information and maintain safety. The problem becomes even more challenging when there are an unknown and time-varying number of targets in the environment. In this paper we address this problem by introducing four new distributed algorithms that allow large teams of robots to: i) run the prediction and ii) update steps of a distributed recursive Bayesian multitarget tracker, iii) determine the set of local neighbors that must exchange data, and iv) exchange data in a consistent manner. All of these algorithms account for a bounded level of localization uncertainty in the robots by leveraging our recent introduction of the convex uncertainty Voronoi (CUV) diagram, which extends the traditional Voronoi diagram to account for localization uncertainty. The CUV diagram introduces a tessellation over the environment, which we use in this work both to distribute the multi-target tracker and to make control decisions about where to search next. We examine the efficacy of our method via a series of simulations and compare them to our previous work which assumed perfect localization.  more » « less
Award ID(s):
1830419
NSF-PAR ID:
10194716
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems
ISSN:
2153-0858
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a distributed coverage control algorithm for mobile sensing networks that can account for bounded uncertainty in the location of each sensor. Our algorithm is capable of safely driving mobile sensors towards areas of high information distribution while having them maintain coverage of the whole area of interest. To do this, we propose two novel variants of the Voronoi diagram. The first, the convex uncertain Voronoi (CUV) diagram, guarantees full coverage of the search area. The second, collision avoidance regions (CARs), guarantee collision-free motions while avoiding deadlock, enabling sensors to safely and successfully reach their goals. We demonstrate the efficacy of these algorithms via a series of simulations with different numbers of sensors and uncertainties in the sensors’ locations. The results show that sensor networks of different scales are able to safely perform optimized distribution corresponding to the information distribution density under different localization uncertainties 
    more » « less
  2. This paper proposes a distributed estimation and control algorithm to allow a team of robots to search for and track an unknown number of targets. The number of targets in the area of interest varies over time as targets enter or leave, and there are many sources of sensing uncertainty, including false positive detections, false negative detections, and measurement noise. The robots use a novel distributed Multiple Hypothesis Tracker (MHT) to estimate both the number of targets and the states of each target. A key contribution is a new data association method that reallocates target tracks across the team. The distributed MHT is compared against another distributed multi-target tracker to test its utility for multi-robot, multi-target tracking. 
    more » « less
  3. The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool for modeling multi-agent coordination problems. To solve DCOPs in a dynamic environment, Dynamic DCOPs (D-DCOPs) have been proposed to model the inherent dynamism present in many coordination problems. D-DCOPs solve a sequence of static problems by reacting to changes in the environment as the agents observe them. Such reactive approaches ignore knowledge about future changes of the problem. To overcome this limitation, we introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel formalism to model D-DCOPs in the presence of exogenous uncertainty. In contrast to reactive approaches, PD-DCOPs are able to explicitly model possible changes of the problem and take such information into account when solving the dynamically changing problem in a proactive manner. The additional expressivity of this formalism allows it to model a wider variety of distributed optimization problems. Our work presents both theoretical and practical contributions that advance current dynamic DCOP models: (i) We introduce Proactive Dynamic DCOPs (PD-DCOPs), which explicitly model how the DCOP will change over time; (ii) We develop exact and heuristic algorithms to solve PD-DCOPs in a proactive manner; (iii) We provide theoretical results about the complexity of this new class of DCOPs; and (iv) We empirically evaluate both proactive and reactive algorithms to determine the trade-offs between the two classes. The final contribution is important as our results are the first that identify the characteristics of the problems that the two classes of algorithms excel in. 
    more » « less
  4. For many types of robots, avoiding obstacles is necessary to prevent damage to the robot and environment. As a result, obstacle avoidance has historically been an im- portant problem in robot path planning and control. Soft robots represent a paradigm shift with respect to obstacle avoidance because their low mass and compliant bodies can make collisions with obstacles inherently safe. Here we consider the benefits of intentional obstacle collisions for soft robot navigation. We develop and experimentally verify a model of robot-obstacle interaction for a tip-extending soft robot. Building on the obstacle interaction model, we develop an algorithm to determine the path of a growing robot that takes into account obstacle collisions. We find that obstacle collisions can be beneficial for open-loop navigation of growing robots because the obstacles passively steer the robot, both reducing the uncertainty of the location of the robot and directing the robot to targets that do not lie on a straight path from the starting point. Our work shows that for a robot with predictable and safe interactions with obstacles, target locations in a cluttered, mapped environment can be reached reliably by simply setting the initial trajectory. This has implications for the control and design of robots with minimal active steering. 
    more » « less
  5. We study the problem of reducing the amount of communication in a distributed target tracking problem. We focus on the scenario where a team of robots are allowed to move on the boundary of the environment. Their goal is to seek a formation so as to best track a target moving in the interior of the environment. The robots are capable of measuring distances to the target. Decentralized control strategies have been proposed in the past that guarantee that the robots asymptotically converge to the optimal formation. However, existing methods require that the robots exchange information with their neighbors at all time steps. Instead, we focus on reducing the amount of communication among robots. We propose a self-triggered communication strategy that decides when a particular robot should seek up-to-date information from its neighbors and when it is safe to operate with possibly outdated information from the neighbor. We prove that this strategy converges to an optimal formation. We compare the two approaches (constant communication and self-triggered communication) through simulations of tracking stationary and mobile targets. 
    more » « less