skip to main content


Title: Distributed Multiple Hypothesis Tracker for Mobile Sensor Networks
This paper proposes a distributed estimation and control algorithm to allow a team of robots to search for and track an unknown number of targets. The number of targets in the area of interest varies over time as targets enter or leave, and there are many sources of sensing uncertainty, including false positive detections, false negative detections, and measurement noise. The robots use a novel distributed Multiple Hypothesis Tracker (MHT) to estimate both the number of targets and the states of each target. A key contribution is a new data association method that reallocates target tracks across the team. The distributed MHT is compared against another distributed multi-target tracker to test its utility for multi-robot, multi-target tracking.  more » « less
Award ID(s):
2143312
NSF-PAR ID:
10416739
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Symposium on Distributed and Autonomous Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Presented at the Workshop on Heterogeneous Multi-Robot Task Allocation and Coordination. The authors recently developed a distributed algorithm to enable a team of homogeneous robots to search for and track an unknown and time-varying number of dynamic targets. This algorithm combined a distributed version of the PHD filter (for multi-target tracking) with Lloyd’s algorithm to drive the motion of the robots. In this paper we extend this previous work to allow a heterogeneous team of groundand aerial robots to perform the search and tracking tasks in a coordinated manner. Both types of robots are equipped with sensors that have a finite field of view and which may receive both false positive and false negative detections. Theaerial robots may vary the size of their sensor field of view (FoV) by changing elevation. This increase in the FoV coincides with a decrease in the accuracy and reliability of the sensor. The ground robots maintain the target tracking information while the aerial robots provide additional sensor coverage. We develop two new distributed algorithms to provide filter updates and to make control decisions in this heterogeneous team. Both algorithms only require robots to communicate with nearby robots and use minimal bandwidth.We demonstrate the efficacy of our approach through a series of simulated experiments which show that the heterogeneous teams are able to achieve more accurate tracking in less time than our previous work. 
    more » « less
  2. Accurately tracking dynamic targets relies on robots accounting for uncertainties in their own states to share information and maintain safety. The problem becomes even more challenging when there are an unknown and time-varying number of targets in the environment. In this paper we address this problem by introducing four new distributed algorithms that allow large teams of robots to: i) run the prediction and ii) update steps of a distributed recursive Bayesian multitarget tracker, iii) determine the set of local neighbors that must exchange data, and iv) exchange data in a consistent manner. All of these algorithms account for a bounded level of localization uncertainty in the robots by leveraging our recent introduction of the convex uncertainty Voronoi (CUV) diagram, which extends the traditional Voronoi diagram to account for localization uncertainty. The CUV diagram introduces a tessellation over the environment, which we use in this work both to distribute the multi-target tracker and to make control decisions about where to search next. We examine the efficacy of our method via a series of simulations and compare them to our previous work which assumed perfect localization. 
    more » « less
  3. This paper compares different distributed control approaches that enable a team of robots search for and track an unknown number of targets. The robots are equipped with sensors which have limited field of view (FoV) and are required to explore the environment. The team uses a distributed formulation of the Probability Hypothesis Density (PHD) filter to estimate the number and the position of the targets. The resulting target estimate is used to select the future search locations for each robot. This paper compares Lloyd’s algorithm, a traditional method for distributed search, with two typical stochastic optimization methods, Particle Swarm Optimization (PSO) and Simulated Annealing (SA). PSO and SA are traditionally used to find a single global maximum, therefore this paper describes novel formulations of PSO and SA to solve the problem of multi-target tracking. These new methods more effectively trade off between exploration and exploitation. Simulations demonstrate that the use of these stochastic optimization techniques improves coverage of the search space and reduces the error in the target estimates compared to the baseline approach. 
    more » « less
  4. In order for a mobile robot to be able to effectively operate in complex, dynamic environments it must be capable of understanding both where and what the objects around them are. In this paper we introduce the semantic probability hypothesis density (SPHD) filter, which allows robots to simultaneously track multiple classes of targets despite measurement uncertainty, including false positive detections, false negative detections, measurement noise, and target misclassification. The SPHD filter is capable of incorporating a different motion model for each type of target and of functioning in situations where the number of targets is unknown and time-varying. We demonstrate the efficacy of the SPHD filter via simulations with multiple target types containing both static and dynamic targets. We show that the SPHD filter performs better than a collection of PHD filters running in parallel, one for each target class. 
    more » « less
  5. null (Ed.)
    Abstract Swarm robotic search aims at searching targets using a large number of collaborating simple mobile robots, with applications to search and rescue and hazard localization. In this regard, decentralized swarm systems are touted for their coverage scalability, time efficiency, and fault tolerance. To guide the behavior of such swarm systems, two broad classes of approaches are available, namely, nature-inspired swarm heuristics and multi-robotic search methods. However, the ability to simultaneously achieve efficient scalability and provide fundamental insights into the exhibited behavior (as opposed to exhibiting a black-box behavior) remains an open problem. To address this problem, this paper extends the underlying search approach in batch-Bayesian optimization to perform search with embodied swarm agents operating in a (simulated) physical 2D arena. Key contributions lie in (1) designing an acquisition function that not only balances exploration and exploitation across the swarm but also allows modeling knowledge extraction over trajectories and (2) developing its distributed implementation to allow asynchronous task inference and path planning by the swarm robots. The resulting collective informative path planning approach is tested on target-search case studies of varying complexity, where the target produces a spatially varying (measurable) signal. Notably, superior performance, in terms of mission completion efficiency, is observed compared to exhaustive search and random walk baselines as well as a swarm optimization-based state-of-the-art method. Favorable scalability characteristics are also demonstrated. 
    more » « less