skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Deep Multi-Graph Clustering via Attentive Cross-Graph Association
Multi-graph clustering aims to improve clustering accuracy by leveraging information from different domains, which has been shown to be extremely effective for achieving better clustering results than single graph based clustering algorithms. Despite the previous success, existing multi-graph clustering methods mostly use shallow models, which are incapable to capture the highly non-linear structures and the complex cluster associations in multigraph, thus result in sub-optimal results. Inspired by the powerful representation learning capability of neural networks, in this paper, we propose an end-to-end deep learning model to simultaneously infer cluster assignments and cluster associations in multi-graph. Specifically, we use autoencoding networks to learn node embeddings. Meanwhile, we propose a minimum-entropy based clustering strategy to cluster nodes in the embedding space for each graph. We introduce two regularizers to leverage both within-graph and cross-graph dependencies. An attentive mechanism is further developed to learn cross-graph cluster associations. Through extensive experiments on a variety of datasets, we observe that our method outperforms state-of-the-art baselines by a large margin.  more » « less
Award ID(s):
1638320
PAR ID:
10194718
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Web Search and Data Mining
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As one of the most important research topics in the unsupervised learning field, Multi-View Clustering (MVC) has been widely studied in the past decade and numerous MVC methods have been developed. Among these methods, the recently emerged Graph Neural Networks (GNN) shine a light on modeling both topological structure and node attributes in the form of graphs, to guide unified embedding learning and clustering. However, the effectiveness of existing GNN-based MVC methods is still limited due to the insufficient consideration in utilizing the self-supervised information and graph information, which can be reflected from the following two aspects: 1) most of these models merely use the self-supervised information to guide the feature learning and fail to realize that such information can be also applied in graph learning and sample weighting; 2) the usage of graph information is generally limited to the feature aggregation in these models, yet it also provides valuable evidence in detecting noisy samples. To this end, in this paper we propose Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering (SGDMC), which promotes the performance of GNN-based deep MVC models by making full use of the self-supervised information and graph information. Specifically, a novel attention-allocating approach that considers both the similarity of node attributes and the self-supervised information is developed to comprehensively evaluate the relevance among different nodes. Meanwhile, to alleviate the negative impact caused by noisy samples and the discrepancy of cluster structures, we further design a sample-weighting strategy based on the attention graph as well as the discrepancy between the global pseudo-labels and the local cluster assignment. Experimental results on multiple real-world datasets demonstrate the effectiveness of our method over existing approaches. 
    more » « less
  2. Graph clustering is a fundamental problem in social network analysis, the goal of which is to group vertices of a graph into a series of densely knitted clusters with each cluster well separated from all the others. Classical graph clustering methods take advantage of the graph topology to model and quantify vertex proximity. With the proliferation of rich graph contents, such as user profiles in social networks, and gene annotations in protein interaction networks, it is essential to consider both the structure and content information of graphs for high-quality graph clustering. In this paper, we propose a graph embedding approach to clustering content-enriched graphs. The key idea is to embed each vertex of a graph into a continuous vector space where the localized structural and attributive information of vertices can be encoded in a unified, latent representation. Specifically, we quantify vertex-wise attribute proximity into edge weights, and employ truncated, attribute-aware random walks to learn the latent representations for vertices. We evaluate our attribute-aware graph embedding method in real-world attributed graphs, and the results demonstrate its effectiveness in comparison with state-of-the-art algorithms. 
    more » « less
  3. To alleviate the cost of collecting and annotating large-scale "3D object" point cloud data, we propose an unsupervised learning approach to learn features from an unlabeled point cloud dataset by using part contrasting and object clustering with deep graph convolutional neural networks (GCNNs). In the contrast learning step, all the samples in the 3D object dataset are cut into two parts and put into a "part" dataset. Then a contrast learning GCNN (ContrastNet) is trained to verify whether two randomly sampled parts from the part dataset belong to the same object. In the cluster learning step, the trained ContrastNet is applied to all the samples in the original 3D object dataset to extract features, which are used to group the samples into clusters. Then another GCNN for clustering learning (ClusterNet) is trained from the orignal 3D data to predict the cluster IDs of all the training samples. The contrasting learning forces the ContrastNet to learn semantic features of objects, while the ClusterNet improves the quality of learned features by being trained to discover objects that belong to the same semantic categories by using cluster IDs. We have conducted extensive experiments to evaluate the proposed framework on point cloud classification tasks. The proposed unsupervised learning approach obtains comparable performance to the state-of-the-art with heavier shape auto-encoding unsupervised feature extraction methods. We have also tested the networks on object recognition using partial 3D data, by simulating occlusions and perspective views, and obtained practically useful results. The code of this work is publicly available at: https://github.com/lingzhang1/ContrastNet. 
    more » « less
  4. Recently there is a growing focus on graph data, and multi-view graph clustering has become a popular area of research interest. Most of the existing methods are only applicable to homophilous graphs, yet the extensive real-world graph data can hardly fulfill the homophily assumption, where the connected nodes tend to belong to the same class. Several studies have pointed out that the poor performance on heterophilous graphs is actually due to the fact that conventional graph neural networks (GNNs), which are essentially low-pass filters, discard information other than the low-frequency information on the graph. Nevertheless, on certain graphs, particularly heterophilous ones, neglecting high-frequency information and focusing solely on low-frequency information impedes the learning of node representations. To break this limitation, our motivation is to perform graph filtering that is closely related to the homophily degree of the given graph, with the aim of fully leveraging both low-frequency and high-frequency signals to learn distinguishable node embedding. In this work, we propose Adaptive Hybrid Graph Filter for Multi-View Graph Clustering (AHGFC). Specifically, a graph joint process and graph joint aggregation matrix are first designed by using the intrinsic node features and adjacency relationship, which makes the low and high-frequency signals on the graph more distinguishable. Then we design an adaptive hybrid graph filter that is related to the homophily degree, which learns the node embedding based on the graph joint aggregation matrix. After that, the node embedding of each view is weighted and fused into a consensus embedding for the downstream task. Experimental results show that our proposed model performs well on six datasets containing homophilous and heterophilous graphs. 
    more » « less
  5. In recent years, incomplete multi-view clustering (IMVC), which studies the challenging multi-view clustering problem on missing views, has received growing research interests. Previous IMVC methods suffer from the following issues: (1) the inaccurate imputation for missing data, which leads to suboptimal clustering performance, and (2) most existing IMVC models merely consider the explicit presence of graph structure in data, ignoring the fact that latent graphs of different views also provide valuable information for the clustering task. To overcome such challenges, we present a novel method, termed Adaptive feature imputation with latent graph for incomplete multi-view clustering (AGDIMC). Specifically, it captures the embbedded features of each view by incorporating the view-specific deep encoders. Then, we construct partial latent graphs on complete data, which can consolidate the intrinsic relationships within each view while preserving the topological information. With the aim of estimating the missing sample based on the available information, we utilize an adaptive imputation layer to impute the embedded feature of missing data by using cross-view soft cluster assignments and global cluster centroids. As the imputation progresses, the portion of complete data increases, contributing to enhancing the discriminative information contained in global pseudo-labels. Meanwhile, to alleviate the negative impact caused by inferior impute samples and the discrepancy of cluster structures, we further design an adaptive imputation strategy based on the global pseudo-label and the local cluster assignment. Experimental results on multiple real-world datasets demonstrate the effectiveness of our method over existing approaches. 
    more » « less