skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph Clustering
Recently there is a growing focus on graph data, and multi-view graph clustering has become a popular area of research interest. Most of the existing methods are only applicable to homophilous graphs, yet the extensive real-world graph data can hardly fulfill the homophily assumption, where the connected nodes tend to belong to the same class. Several studies have pointed out that the poor performance on heterophilous graphs is actually due to the fact that conventional graph neural networks (GNNs), which are essentially low-pass filters, discard information other than the low-frequency information on the graph. Nevertheless, on certain graphs, particularly heterophilous ones, neglecting high-frequency information and focusing solely on low-frequency information impedes the learning of node representations. To break this limitation, our motivation is to perform graph filtering that is closely related to the homophily degree of the given graph, with the aim of fully leveraging both low-frequency and high-frequency signals to learn distinguishable node embedding. In this work, we propose Adaptive Hybrid Graph Filter for Multi-View Graph Clustering (AHGFC). Specifically, a graph joint process and graph joint aggregation matrix are first designed by using the intrinsic node features and adjacency relationship, which makes the low and high-frequency signals on the graph more distinguishable. Then we design an adaptive hybrid graph filter that is related to the homophily degree, which learns the node embedding based on the graph joint aggregation matrix. After that, the node embedding of each view is weighted and fused into a consensus embedding for the downstream task. Experimental results show that our proposed model performs well on six datasets containing homophilous and heterophilous graphs.  more » « less
Award ID(s):
2319451 2215789 1909879
PAR ID:
10545731
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
14
ISSN:
2159-5399
Page Range / eLocation ID:
15841 to 15849
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increase of multi-view graph data, multi-view graph clustering (MVGC) that can discover the hidden clusters without label supervision has attracted growing attention from researchers. Existing MVGC methods are often sensitive to the given graphs, especially influenced by the low quality graphs, i.e., they tend to be limited by the homophily assumption. However, the widespread real-world data hardly satisfy the homophily assumption. This gap limits the performance of existing MVGC methods on low homophilous graphs. To mitigate this limitation, our motivation is to extract high-level view-common information which is used to refine each view's graph, and reduce the influence of non-homophilous edges. To this end, we propose dual label-guided graph refinement for multi-view graph clustering (DuaLGR), to alleviate the vulnerability in facing low homophilous graphs. Specifically, DuaLGR consists of two modules named dual label-guided graph refinement module and graph encoder module. The first module is designed to extract the soft label from node features and graphs, and then learn a refinement matrix. In cooperation with the pseudo label from the second module, these graphs are refined and aggregated adaptively with different orders. Subsequently, a consensus graph can be generated in the guidance of the pseudo label. Finally, the graph encoder module encodes the consensus graph along with node features to produce the high-level pseudo label for iteratively clustering. The experimental results show the superior performance on coping with low homophilous graph data. The source code for DuaLGR is available at https://github.com/YwL-zhufeng/DuaLGR. 
    more » « less
  2. Graph neural networks (GNNs) rely on the assumption of graph homophily, which, however, does not hold in some real-world scenarios. Graph heterophily compromises them by smoothing node representations and degrading their discrimination capabilities. To address this limitation, we propose H^2GNN, which implements Homophilic and Heterophilic feature aggregations to advance GNNs in graphs with homophily or heterophily. H^2GNN proceeds by combining local feature separation and adaptive message aggregation, where each node separates local features into similar and dissimilar feature vectors, and aggregates similarities and dissimilarities from neighbors based on connection property. This allows both similar and dissimilar features for each node to be effectively preserved and propagated, and thus mitigates the impact of heterophily on graph learning process. As dual feature aggregations introduce extra model complexity, we also offer a simplified implementation of H^2GNN to reduce training time. Extensive experiments on seven benchmark datasets have demonstrated that H^2GNN can significantly improve node classification performance in graphs with different homophily ratios, which outperforms state-of-the-art GNN models. 
    more » « less
  3. This paper considers the problem of inferring the topology of a graph from noisy outputs of an unknown graph filter excited by low-rank signals. Limited by this low-rank structure, we focus on the community detection problem, whose aim is to partition the node set of the unknown graph into subsets with high edge densities. We propose to detect the communities by applying spectral clustering on the low-rank output covariance matrix. To analyze the performance, we show that the low-rank covariance yields a sketch of the eigenvectors of the unknown graph. Importantly, we provide theoretical bounds on the error introduced by this sketching procedure based on spectral features of the graph filter involved. Finally, our theoretical findings are validated via numerical experiments in both synthetic and real-world graphs. 
    more » « less
  4. As one of the most important research topics in the unsupervised learning field, Multi-View Clustering (MVC) has been widely studied in the past decade and numerous MVC methods have been developed. Among these methods, the recently emerged Graph Neural Networks (GNN) shine a light on modeling both topological structure and node attributes in the form of graphs, to guide unified embedding learning and clustering. However, the effectiveness of existing GNN-based MVC methods is still limited due to the insufficient consideration in utilizing the self-supervised information and graph information, which can be reflected from the following two aspects: 1) most of these models merely use the self-supervised information to guide the feature learning and fail to realize that such information can be also applied in graph learning and sample weighting; 2) the usage of graph information is generally limited to the feature aggregation in these models, yet it also provides valuable evidence in detecting noisy samples. To this end, in this paper we propose Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering (SGDMC), which promotes the performance of GNN-based deep MVC models by making full use of the self-supervised information and graph information. Specifically, a novel attention-allocating approach that considers both the similarity of node attributes and the self-supervised information is developed to comprehensively evaluate the relevance among different nodes. Meanwhile, to alleviate the negative impact caused by noisy samples and the discrepancy of cluster structures, we further design a sample-weighting strategy based on the attention graph as well as the discrepancy between the global pseudo-labels and the local cluster assignment. Experimental results on multiple real-world datasets demonstrate the effectiveness of our method over existing approaches. 
    more » « less
  5. Graphs/Networks are common in real-world applications where data have rich content and complex relationships. The increasing popularity also motivates many network learning algorithms, such as community detection, clustering, classification, and embedding learning, etc.. In reality, the large network volumes often hider a direct use of learning algorithms to the graphs. As a result, it is desirable to have the flexibility to condense a network to an arbitrary size, with well-preserved network topology and node content information. In this paper, we propose a graph compression network (GEN) to achieve network compression and embedding at the same time. Our theme is to leverage the network topology to find node mappings, such that densely connected nodes, including their node content, are compressed as a new node, with a latent vector (i.e. embedding) being learned to represent the compressed node. In addition to compression learning, we also develop a novel encoding-decoding framework, using feature diffusion process, to "decompress" the condensed network. Different from traditional graph convolution which uses direct-neighbor message passing, our decompression advocates high-order message passing within compressed nodes to learning feature representation for all nodes in the network. A unique strength of GEN is that it leverages the graph neural network principle to learn mapping automatically, so one can compress a network to an arbitrary size, and also decompress it to the original node space with minimum information loss. Experiments and comparisons confirm that GEN can automatically find clusters and communities, and compress them as new nodes. Results also show that GEN achieves improved performance for numerous tasks, including graph classification and node clustering. 
    more » « less